- #1
mmzaj
- 107
- 0
greetings . we have the integral :
[tex] \lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds[/tex]
which diverges for every value of n except [itex] n=0 [/itex]
if we perform the change of variables :
[tex] s\rightarrow \frac{1}{s}[/tex]
then :
[tex]\lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds=\int_{-i}^{i}\frac{(1-s)^{n}}{s^{n+1}}ds[/tex]
which converges . am i missing something here , or is this correct !?
[tex] \lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds[/tex]
which diverges for every value of n except [itex] n=0 [/itex]
if we perform the change of variables :
[tex] s\rightarrow \frac{1}{s}[/tex]
then :
[tex]\lim_{T\to \infty }\int_{2-iT}^{2+iT}\frac{(s-1)^{n}}{s}ds=\int_{-i}^{i}\frac{(1-s)^{n}}{s^{n+1}}ds[/tex]
which converges . am i missing something here , or is this correct !?