MHB Can the Kernel of a Ring Homomorphism Equal 12Z or 13Z?

  • Thread starter Thread starter AkilMAI
  • Start date Start date
  • Tags Tags
    Kernel
Click For Summary
The discussion centers on whether the kernel of a ring homomorphism f from Z to C can be equal to 12Z or 13Z. It concludes that both 12Z and 13Z cannot be the kernel because if ker f were 12Z, it would imply f(1) = 0, contradicting the property of homomorphisms where f(1) must equal 1. Similarly, the same reasoning applies to 13Z, leading to the conclusion that the kernel must be {0}. The First Isomorphism Theorem reinforces that the quotient Z/ker f must be an integral domain, which is not the case for either 12Z or 13Z. Ultimately, the kernel of the homomorphism f must be {0}.
AkilMAI
Messages
73
Reaction score
0
Let f : Z ->C be a homomorphism of rings. Can the kernel of f be equal to 12Z or 13Z?
Ok,the way I'm thinking about it is using a proof by contradiction:asuming ker f=12Z...then by the First Isomorphism Theorem for rings Z/ker f ~im f where I am f is by definition a subring of C.But since I am f=12Z is not an integral domain and every subring in C is an integral domain the I am f will not be a subring oc C which is a contradiction.
The same thing with 13Z,is not equal with the kernel.
 
Physics news on Phys.org
Re: Kernerl and homomorphism

think about what happens to f(1).

if f(12) = 0, then f(12) = f(1 + 1 +...+ 1) = f(1) + f(1) +...+ f(1) = 12f(1) = 0.

since C is an integral domain, and 12 ≠ 0, f(1) = 0. but f(1) = 1, since f is a ring homomorphism.
 
Re: Kernerl and homomorphism

ok either ker f=12Z or ker f= {0}
f(n)=0>n*f(1)=0 but f(1)=1since f is a ring homomorphism.So ker f={0} or

Z/ker f is an integral domain since it is a subring of C =>ker f/=12Z. or ker f=/13
I'm I doing this wrong?
 
Re: Kernerl and homomorphism

f is ring homomorphism which means f(1) =1 must be
but if 12Z is the kernel this will drive us to f(1) =0 which contradict with the ring homomorphism
so 12Z,13Z can't be the kernel, ker(f) = {0}
 
Re: Kernerl and homomorphism

Thank you for the confirmation
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 5 ·
Replies
5
Views
938
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
608
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K