- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Here's this week's problem.
-----
Problem: (a) Let $z,\,w$ be two complex numbers such that $\overline{z}w\neq 1$. Prove that\[\left|\frac{w-z}{1-\overline{w}z}\right|<1\quad\text{if $\left|z\right|<1$ and $\left|w\right|<1$,}\]
and also that
\[\left|\frac{w-z}{1-\overline{w}z}\right|=1\quad\text{if $\left|z\right|=1$ or $\left|w\right|=1$.}\]
(b) Prove that for a fixed $w$ in the unit disk $\mathbb{D}$, the mapping\[F:z\mapsto \frac{w-z}{1-\overline{w}z}\]
satisfies the following conditions:
(i) $F$ maps the unit disc to itself (that is, $F:\mathbb{D}\rightarrow\mathbb{D}$), and is holomorphic.
(ii) $F$ interchanges $0$ and $w$, namely $F(0)=w$ and $F(w)=0$.
(iii) $\left|F(z)\right|=1$ if $\left|z\right|=1$.
(iv) $F:\mathbb{D}\rightarrow\mathbb{D}$ is bijective. [Hint: Calculate $F\circ F$.]
-----
-----
Problem: (a) Let $z,\,w$ be two complex numbers such that $\overline{z}w\neq 1$. Prove that\[\left|\frac{w-z}{1-\overline{w}z}\right|<1\quad\text{if $\left|z\right|<1$ and $\left|w\right|<1$,}\]
and also that
\[\left|\frac{w-z}{1-\overline{w}z}\right|=1\quad\text{if $\left|z\right|=1$ or $\left|w\right|=1$.}\]
(b) Prove that for a fixed $w$ in the unit disk $\mathbb{D}$, the mapping\[F:z\mapsto \frac{w-z}{1-\overline{w}z}\]
satisfies the following conditions:
(i) $F$ maps the unit disc to itself (that is, $F:\mathbb{D}\rightarrow\mathbb{D}$), and is holomorphic.
(ii) $F$ interchanges $0$ and $w$, namely $F(0)=w$ and $F(w)=0$.
(iii) $\left|F(z)\right|=1$ if $\left|z\right|=1$.
(iv) $F:\mathbb{D}\rightarrow\mathbb{D}$ is bijective. [Hint: Calculate $F\circ F$.]
-----