- #1
mangokiller
- 1
- 0
A ket is expanded as [itex] \vert \nu \rangle = c_1\vert \nu_1\rangle+c_2\vert \nu_{2}\rangle [/itex].
A measurement results in the eigenvalue a1. Is it possible to measure the other eigenvalue a2 at a time t after the first measurement?
Could I write something like
[itex] \vert \psi(t)\rangle = e^{-i \hat H t / \hbar}\vert \psi(0) \rangle =e^{-i \hat H t / \hbar}\vert \nu_1 \rangle= e^{-i \hat H t / \hbar} \big(c_1\vert \nu_1 \rangle+c_2\vert \nu_2\rangle \big) =e^{-i E_1 t / \hbar} c_1\vert \nu_1 \rangle+e^{-i E_2 t / \hbar}c_2\vert \nu_{2}\rangle. [/itex]
A measurement results in the eigenvalue a1. Is it possible to measure the other eigenvalue a2 at a time t after the first measurement?
Could I write something like
[itex] \vert \psi(t)\rangle = e^{-i \hat H t / \hbar}\vert \psi(0) \rangle =e^{-i \hat H t / \hbar}\vert \nu_1 \rangle= e^{-i \hat H t / \hbar} \big(c_1\vert \nu_1 \rangle+c_2\vert \nu_2\rangle \big) =e^{-i E_1 t / \hbar} c_1\vert \nu_1 \rangle+e^{-i E_2 t / \hbar}c_2\vert \nu_{2}\rangle. [/itex]