Can the probabilities of state vectors |r⟩ and |i⟩ be determined from |ψ⟩?

In summary, the probabilities of state vectors |r⟩ and |i⟩ can be determined from the overall state |ψ⟩ by projecting |ψ⟩ onto these vectors. The probabilities are given by the squared magnitudes of the inner products of |ψ⟩ with |r⟩ and |i⟩, respectively. This allows for the calculation of the likelihood of measuring the system in either state based on its quantum state representation.
  • #1
hongseok
20
3
TL;DR Summary
∣r⟩,∣l⟩,∣i⟩, and ∣o⟩ can all be expressed as expressions for ∣u⟩ and ∣d⟩. So, given the state vector ∣ψ⟩ = α∣u⟩ + β∣d⟩, is it possible to know not only the probability of ∣u⟩ but also the probability of ∣r⟩ and ∣i⟩? ∣ψ⟩ can be expressed as an expression for ∣r⟩, ∣l⟩ or ∣i⟩, ∣o⟩.
∣r⟩,∣l⟩,∣i⟩, and ∣o⟩ can all be expressed as expressions for ∣u⟩ and ∣d⟩. So, given the state vector ∣ψ⟩ = α∣u⟩ + β∣d⟩, is it possible to know not only the probability of ∣u⟩ but also the probability of ∣r⟩ and ∣i⟩? ∣ψ⟩ can be expressed as an expression for ∣r⟩, ∣l⟩ or ∣i⟩, ∣o⟩.
 
Physics news on Phys.org
  • #2
hongseok said:
So, given the state vector ∣ψ⟩ = α∣u⟩ + β∣d⟩, is it possible to know not only the probability of ∣u⟩ but also the probability of ∣r⟩ and ∣i⟩? ∣ψ⟩ can be expressed as an expression for ∣r⟩, ∣l⟩ or ∣i⟩, ∣o⟩.
You haven't said what any if any observable corresponds to any of these vectors, so all we can give you is the general answer:
If we can write $$|\psi\rangle=\alpha_1|A_1\rangle+\alpha_2|A_2\rangle=\beta_1|B_1\rangle+\beta_2|B_2\rangle$$ where ##|A_1\rangle## and ##|A_2\rangle## are orthogonal eigenvectors of the Hermitian operator ##\hat{A}## and likewise for ##|B_1\rangle## and ##|B_2\rangle## and the observable ##\hat{B}## then ...

Yes, we know the probability of getting any of these four possible results if we were to perform the measurement. The catch is that if ##\hat{A}## and ##\hat{B}## do not commute we only get to measure one of them.
 
  • Like
Likes hongseok
  • #3
hongseok said:
TL;DR Summary: ∣r⟩,∣l⟩,∣i⟩, and ∣o⟩ can all be expressed as expressions for ∣u⟩ and ∣d⟩. So, given the state vector ∣ψ⟩ = α∣u⟩ + β∣d⟩, is it possible to know not only the probability of ∣u⟩ but also the probability of ∣r⟩ and ∣i⟩? ∣ψ⟩ can be expressed as an expression for ∣r⟩, ∣l⟩ or ∣i⟩, ∣o⟩.

∣r⟩,∣l⟩,∣i⟩, and ∣o⟩ can all be expressed as expressions for ∣u⟩ and ∣d⟩. So, given the state vector ∣ψ⟩ = α∣u⟩ + β∣d⟩, is it possible to know not only the probability of ∣u⟩ but also the probability of ∣r⟩ and ∣i⟩? ∣ψ⟩ can be expressed as an expression for ∣r⟩, ∣l⟩ or ∣i⟩, ∣o⟩.
The probability that the state is |r> in observation is
[tex]|<r|\psi>|^2=|\alpha<r|u>+\beta<r|d>|^2[/tex]
in condition that all these bras and kets are normalized.
 
Last edited:
  • Like
Likes hongseok

Similar threads

Replies
7
Views
1K
Replies
64
Views
4K
Replies
9
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Back
Top