- #1
fog37
- 1,569
- 108
- TL;DR Summary
- angle argument of a sine function
Hello,
I understand that the sine function take an argument as an input and produced an output which is a real number between 1 and -1. My question is about the argument. I know it can be in either radians or degrees which are different units to measure angle. An angle is the portion of the plane between two lines that meet at a vertex.
For example, let's consider a function that takes the length of the side as input and calculates the perimeter of a square: ##f(x)=4x##. The output is correct regardless of the input being in feet, meter, inches, etc. However, the numerical output is different depending on the unit of ##x##.
What about in the case of the function ##f(x)=sin(x)## or ##f(x)=3sin(4x+30^\circ)##? If ##x## is in radians or degrees, the answer is the same...How is that possible? I am trying to explain this concept to a friend but I am convincing and clear.
thanks!
I understand that the sine function take an argument as an input and produced an output which is a real number between 1 and -1. My question is about the argument. I know it can be in either radians or degrees which are different units to measure angle. An angle is the portion of the plane between two lines that meet at a vertex.
For example, let's consider a function that takes the length of the side as input and calculates the perimeter of a square: ##f(x)=4x##. The output is correct regardless of the input being in feet, meter, inches, etc. However, the numerical output is different depending on the unit of ##x##.
What about in the case of the function ##f(x)=sin(x)## or ##f(x)=3sin(4x+30^\circ)##? If ##x## is in radians or degrees, the answer is the same...How is that possible? I am trying to explain this concept to a friend but I am convincing and clear.
thanks!
Last edited by a moderator: