- #1
JonF
- 621
- 1
How would I show that the set of all algebraic reals is countable? Could I a just assume a function p(f(x)) maps a polynomial f(x) to a set containing it’s real roots? I’m not sure if I would need to argue p(x) exist, since the fundamental theorem of algebra seems to suggest it’s okay, but Abel-Ruffini Theorem seems to suggest I can’t.