- #1
RagingHadron
- 18
- 0
So I really know very little about the subject but from the little I could gather online...
Consider the subset problem on wikipedia. Does a subset of {−2, −3, 15, 14, 7, −10} equal zero? It shows the work for you and then says that no algorithm to find it in polynomial time is known, only in exponential (with (2^n)-1 tries) It says that an algorithm can only exist in polynomial time if P=NP. So now, can we not set (2^n)-1=n^x so that the algorithm in polynomial time is n^((log((2^n)-1)+2i∏c)/(log(n)) where c∈Z, Z being the set of integers. Does that make any sense?
Consider the subset problem on wikipedia. Does a subset of {−2, −3, 15, 14, 7, −10} equal zero? It shows the work for you and then says that no algorithm to find it in polynomial time is known, only in exponential (with (2^n)-1 tries) It says that an algorithm can only exist in polynomial time if P=NP. So now, can we not set (2^n)-1=n^x so that the algorithm in polynomial time is n^((log((2^n)-1)+2i∏c)/(log(n)) where c∈Z, Z being the set of integers. Does that make any sense?