- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the vectors $\overrightarrow{a_1}=\begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}, \overrightarrow{a_2}=\begin{pmatrix}-1 \\0 \\ 2\end{pmatrix}, \overrightarrow{a_3}=\begin{pmatrix}7 \\ 8 \\ 6\end{pmatrix}$.
I have shown that these vectors are linearly dependent:
$\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}$
right? (Wondering)
Can we write the vectors $\overrightarrow{b}=\begin{pmatrix}-6 \\ -4 \\ 2\end{pmatrix}$ and $\overrightarrow{c}=\begin{pmatrix}0 \\ 2 \\ 1\end{pmatrix}$ as linear combinations of the vectors $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ ? (Wondering)
To check this I applied the Gauss elimination algorithm:
$\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
-6\\
-4\\
2
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
-6\\
8 \\
20
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
-6\\
8\\
0
\end{matrix}\right.\end{bmatrix}$ $\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
0\\
2\\
1
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
0\\
2 \\
3
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
2\\
-2
\end{matrix}\right.\end{bmatrix}$
So, in both cases the vectors $\overrightarrow{b}$ and $\overrightarrow{c}$ cannot be written as linear combinations of the vectors $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$.
Is everything correct? Could I improve something? (Wondering)
I have to give all the possible solutions of the linear equations system.
For the vector $\overrightarrow{b}$:
we get $2\lambda_2-6\lambda_3=8$ and $\lambda_1-\lambda_2+7\lambda_3=-6$.
Solving at the first equation for $\lambda_2$ we get $\lambda_2=4+3\lambda_3$.
From the other equation we get $\lambda_1=\lambda_2-7\lambda_3-6 =4+3\lambda_3-7\lambda_3-6=-2-4\lambda_3$.
So, are all the possible solutions of the linear equations system: $(\lambda_1, \lambda_2, \lambda_3)=(-2-4\lambda_3, 4+3\lambda_3, \lambda_3)=\lambda_3(-4, 3, 1)+(-2, 4, 0)$ ? (Wondering)
We have the vectors $\overrightarrow{a_1}=\begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}, \overrightarrow{a_2}=\begin{pmatrix}-1 \\0 \\ 2\end{pmatrix}, \overrightarrow{a_3}=\begin{pmatrix}7 \\ 8 \\ 6\end{pmatrix}$.
I have shown that these vectors are linearly dependent:
$\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
0\\
0
\end{matrix}\right.\end{bmatrix}$
right? (Wondering)
Can we write the vectors $\overrightarrow{b}=\begin{pmatrix}-6 \\ -4 \\ 2\end{pmatrix}$ and $\overrightarrow{c}=\begin{pmatrix}0 \\ 2 \\ 1\end{pmatrix}$ as linear combinations of the vectors $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ ? (Wondering)
To check this I applied the Gauss elimination algorithm:
$\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
-6\\
-4\\
2
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
-6\\
8 \\
20
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
-6\\
8\\
0
\end{matrix}\right.\end{bmatrix}$ $\begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
2 & 0 & 8\\
3 & 2 & 6
\end{matrix}\left|\begin{matrix}
0\\
2\\
1
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
2.\text{row}-2\cdot 1.\text{row}\\
3.\text{row}-3\cdot 1.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 5 & -15
\end{matrix}\left|\begin{matrix}
0\\
2 \\
3
\end{matrix}\right.\end{bmatrix}\begin{matrix}
\\
\\
3.\text{row}-\frac{5}{2}\cdot 2.\text{row}
\end{matrix} \longrightarrow \begin{bmatrix}
\begin{matrix}
1 & -1 & 7\\
0 & 2 & -6\\
0 & 0 & 0
\end{matrix}\left|\begin{matrix}
0\\
2\\
-2
\end{matrix}\right.\end{bmatrix}$
So, in both cases the vectors $\overrightarrow{b}$ and $\overrightarrow{c}$ cannot be written as linear combinations of the vectors $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$.
Is everything correct? Could I improve something? (Wondering)
I have to give all the possible solutions of the linear equations system.
For the vector $\overrightarrow{b}$:
we get $2\lambda_2-6\lambda_3=8$ and $\lambda_1-\lambda_2+7\lambda_3=-6$.
Solving at the first equation for $\lambda_2$ we get $\lambda_2=4+3\lambda_3$.
From the other equation we get $\lambda_1=\lambda_2-7\lambda_3-6 =4+3\lambda_3-7\lambda_3-6=-2-4\lambda_3$.
So, are all the possible solutions of the linear equations system: $(\lambda_1, \lambda_2, \lambda_3)=(-2-4\lambda_3, 4+3\lambda_3, \lambda_3)=\lambda_3(-4, 3, 1)+(-2, 4, 0)$ ? (Wondering)
Last edited by a moderator: