Can this be solved without trial and error?

In summary, the conversation discusses a mathematical problem that can be solved by factoring and trial and error. The solution involves finding the difference between squares and using the identity (x+y)(x-y)=x^2-y^2 to solve for possible values. It is noted that including 1 as a factor is not necessary.
  • #1
Darkmisc
220
31
Homework Statement
One square subtracted from another square gives an area of 57. Both squares have side lengths less than 25. What is the area of the larger square?
Relevant Equations
x^2 - Y^2 = 57
Hi everyone

The following problem looks like it needs to be solved by trial and error. Is there a quicker way to do it?

I had the answers (but not solutions), so I simply worked backwards to get 11^2-8^2=57.

If I had to solve it, I would have made a list of the final digits you'd get if you squared numbers ending in 0 - 9, i.e.

0 --> 0
9 --> 1
8 --> 4
7 --> 9
6 --> 6
5 --> 5
4 --> 6
3 --> 9
2 --> 4
1 --> 1

You could also just list the squares of 1 to 25, but I'm not sure if calculators are allowed for this problem.

I'd then look at the which final digits subtracted from each other gives a final digit of 7. Here, it'd be be 1 minus 4 gives a final digit of 7.

Then, I'd use trial and error and eventually arrive at 11^2 - 8^2.

Can it be done in less steps than this?

Thanks

image_2022-07-09_170900314.png
 
  • Like
Likes Delta2
Physics news on Phys.org
  • #2
Factor 57 as 1*3*19
and then wlog: x≥y set x = y + z where z≥ 0 for some integer z

This will give you
x2 - y2 = 57
(y+z)2-y2 = 58´7
y2 + 2yz + z2 - y2 = 57
2yz + z2 = 57
factorize:
z(2y + z) = 57 = 1*3*19

Now you have only a few cases to consider

case 1: z = 1 gives you 2y + 1 = 57 thus y = 28 not eligible
case 2: z = 3 gives you 2y + 3 = 19 thus y = 8 and x = 11 your solution
case 3: z = 19 gives you 2y + 19 = 3 thus y < 0 not eligible
case 4: z = 57 willl also give y< 0

When you work with integer equations, it is a good idea to factorize
 
  • Like
Likes phinds, Delta2 and Darkmisc
  • #3
Whenever you have a difference between squares, you should start with the identity [itex]x^2 - y^2 = (x+y)(x-y)[/itex]. Then we have [tex]
(x + y)(x - y) = 57.[/tex] There are now two possibilities: [tex]
\begin{split} x + y &= \mbox{$57$ or $19$}, \\
x - y &= \mbox{$1$ or $3$}.\end{split}[/tex] This system is easliy solved to find [itex](x,y) = (29, 28)[/itex] or [itex](11,8)[/itex]. The first violates the constraint that both [itex]x[/itex] and [itex]y[/itex] are less than 25.

EDIT: An improvement is to note that the conditions of the problem require [tex]
0 < x - y < x + y < 50[/tex] so [itex]x + y = 57[/itex] is plainly impossible.
 
Last edited:
  • Like
Likes SammyS, fresh_42, Delta2 and 2 others
  • #4
Yeah that was a much better solution than mine :) but my strategy can be used when not havin difference of squares too
 
  • Like
Likes Delta2
  • #5
pasmith said:
Whenever you have a difference between squares, you should start with the identity [itex]x^2 - y^2 = (x+y)(x-y)[/itex]. Then we have [tex]
(x + y)(x - y) = 57.[/tex] There are now two possibilities: [tex]
\begin{split} x + y &= \mbox{$57$ or $19$}, \\
x - y &= \mbox{$1$ or $3$}.\end{split}[/tex] This system is easliy solved to find [itex](x,y) = (29, 28)[/itex] or [itex](11,8)[/itex]. The first violates the constraint that both [itex]x[/itex] and [itex]y[/itex] are less than 25.
 
  • #6
drmalawi said:
Factor 57 as 1*3*19
No need to include 1 as a factor.
drmalawi said:
This will give you
x2 - y2 = 57
(y+z)2-y2 = 58´7
58'7 is a typo and should be 57, right?
drmalawi said:
factorize:
z(2y + z) = 57 = 1*3*19
Again, no need to include 1.
 
  • #7
Mark44 said:
No need to include 1 as a factor.
I know but it is sometimes illustrative and helpful

Mark44 said:
58'7 is a typo and should be 57, right?

yes it is
 

FAQ: Can this be solved without trial and error?

Can all problems be solved without trial and error?

No, not all problems can be solved without trial and error. Some problems require a systematic approach and experimentation to find the most effective solution.

What is trial and error?

Trial and error is a problem-solving method that involves trying different solutions until the desired outcome is achieved. It is often used when there is no known or obvious solution to a problem.

Is trial and error a reliable method?

It depends on the problem and the context. Trial and error can be effective in finding a solution, but it may also be time-consuming and inefficient. In some cases, it may not lead to the best or most optimal solution.

Are there any alternatives to trial and error?

Yes, there are other problem-solving methods that can be used instead of trial and error. These include deductive reasoning, inductive reasoning, and the scientific method. The most suitable method will depend on the nature of the problem.

Can trial and error be used in scientific research?

Yes, trial and error can be a useful tool in scientific research. It allows scientists to test hypotheses and ideas, and can lead to new discoveries and insights. However, it should be used in conjunction with other methods and with caution, as it may not always lead to accurate or reliable results.

Back
Top