- #1
klim
- 8
- 0
Hallo, can someone help me to proof this inequality:
\(\displaystyle 1-(\lambda-(m+1)) \cdot \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^{m} \frac{\lambda^j}{j!} \leq \frac{\lambda}{(\lambda-(m+1))^2} \) under condition \(\displaystyle m+1 < \lambda \).
\(\displaystyle 1-(\lambda-(m+1)) \cdot \frac{m!}{\lambda^{m+1}} \cdot \sum_{j=0}^{m} \frac{\lambda^j}{j!} \leq \frac{\lambda}{(\lambda-(m+1))^2} \) under condition \(\displaystyle m+1 < \lambda \).