- #1
Albert1
- 1,221
- 0
Given:
\(\displaystyle x>0,\, n\in\mathbb{N}\)
Prove:
\(\displaystyle (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n\)
\(\displaystyle x>0,\, n\in\mathbb{N}\)
Prove:
\(\displaystyle (1+x)\times\left(1+x^2 \right)\times\left(1+x^3 \right)\times\cdots\times\left(1+x^n \right)\geq\left(1+x^{\large{\frac{n+1}{2}}} \right)^n\)
Last edited by a moderator: