Can this sequence equation be proven?

  • Thread starter Thread starter Miss_lolitta
  • Start date Start date
Miss_lolitta
10
0
Hello,
can someone prove this to me as.
Any help would help save my hair I have not torn out as yet.:cry:

If [math]
a_n,b_n
[/math]are sequences of real number ,n>m then:

[math]
a_{n+1}S_n-a_m S_{m-1}+\sum_{k=m}^{n}( a_k - b_{k+1})S_k
[/math]
Where [math]
S_n
[/math]is the partial sum of sequence [math]
\sum_{k=1}^{\infty}b_n
[/math]

Thanks for any help
 
Physics news on Phys.org
the tag here is tex, not math, in the square brackets.

If <br /> a_n,b_n<br />
are sequences of real number ,n>m then:

<br /> a_{n+1}S_n-a_m S_{m-1}+\sum_{k=m}^{n}( a_k - b_{k+1})S_k<br />
Where <br /> S_n<br />is the partial sum of sequence <br /> \sum_{k=1}^{\infty}b_n<br />

nope, still makes no sense.
 
yes that's right

thanks
 
what color is your hair?
 
silver:smile:
 
miss lollita said:
If <br /> a_n,b_n<br />
are sequences of real number ,n>m then:

<br /> a_{n+1}S_n-a_m S_{m-1}+\sum_{k=m}^{n}( a_k - b_{k+1})S_k<br />
equals what??
Where <br /> S_n<br />is the partial sum of sequence <br /> \sum_{k=1}^{\infty}b_n<br />
Presumably you mean "Where <br /> S_n<br />is the partial sum of sequence
\sum_{k=1}^n b_n
 
sorry

\sum_{k=1}^n (a_k . b_k)=a_{n+1}S_n-a_m S_{m-1}+\sum_{k=m}^{n}( a_k - b_{k+1})S_k
 
Last edited:
Back
Top