- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
Let $A, B, C$ denote distinct points with integer coordinates in $\mathbb R^2$. Prove that if \[(|AB|+|BC|)^2<8\cdot [ABC]+1\]
then $A, B, C$ are three vertices of a square. Here $|XY|$ is the length of segment $XY$ and $[ABC]$ is the area of triangle $ABC$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $A, B, C$ denote distinct points with integer coordinates in $\mathbb R^2$. Prove that if \[(|AB|+|BC|)^2<8\cdot [ABC]+1\]
then $A, B, C$ are three vertices of a square. Here $|XY|$ is the length of segment $XY$ and $[ABC]$ is the area of triangle $ABC$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!