- #1
karush
Gold Member
MHB
- 3,269
- 5
{8.7.4 whit} nmh{962}
$$\displaystyle
I=\int \sin\left({t}\right) \cos\left({2t}\right) \ dt $$
substitution
$u=\cos\left({t}\right)
\ \ \ du=-\sin\left({t}\right) \ dt
\ \ \ \cos\left({2t}\right) =2\cos^2 \left({t}\right)-1 $
$\displaystyle
I=\int \left(1-2u^2 \right) du
\implies u-\frac{2u^3}{3}+C$
Back substittute u
$\displaystyle \cos\left({t}\right)-\frac{2\cos^3(t) }{3}+C $
TI gave a different answer but might be alternative form
$$\displaystyle
I=\int \sin\left({t}\right) \cos\left({2t}\right) \ dt $$
substitution
$u=\cos\left({t}\right)
\ \ \ du=-\sin\left({t}\right) \ dt
\ \ \ \cos\left({2t}\right) =2\cos^2 \left({t}\right)-1 $
$\displaystyle
I=\int \left(1-2u^2 \right) du
\implies u-\frac{2u^3}{3}+C$
Back substittute u
$\displaystyle \cos\left({t}\right)-\frac{2\cos^3(t) }{3}+C $
TI gave a different answer but might be alternative form
Last edited: