- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Let $1 < p < \infty$, and let $(f_n)$ be a sequence of real-valued functions in $\mathscr{L}^p(-\infty, \infty)$ which converges pointwise a.e. to zero. Show that if $\|f_n\|_p$ is uniformly bounded, then $(f_n)$ converges weakly to zero in $\mathscr{L}^p(-\infty,\infty)$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $1 < p < \infty$, and let $(f_n)$ be a sequence of real-valued functions in $\mathscr{L}^p(-\infty, \infty)$ which converges pointwise a.e. to zero. Show that if $\|f_n\|_p$ is uniformly bounded, then $(f_n)$ converges weakly to zero in $\mathscr{L}^p(-\infty,\infty)$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!