- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Wave)
I want to show that the Euler equation for the functional $J(y)= \int_a^b f(x,y) \sqrt{1+y'^2}dx$ has the form:
$$f_y-f_xy'-\frac{fy''}{1+y'^2}=0$$$$L(x,y,y')= f(x,y) \sqrt{1+y'^2} dx$$
Substituting $L_y(x,y,y')=f_y(x,y) \sqrt{1+y'^2}, \ L_{y'}(x,y,y')= f(x,y) \frac{y'}{\sqrt{1+y'^2}}$, I got the following:$$f_y(1+y'^2)-f_x y'- f y''+ \frac{f (y')^2}{(1+y'^2)}=0$$
Can we get from this relation to the desired one, or have I done something wrong? (Thinking)
I want to show that the Euler equation for the functional $J(y)= \int_a^b f(x,y) \sqrt{1+y'^2}dx$ has the form:
$$f_y-f_xy'-\frac{fy''}{1+y'^2}=0$$$$L(x,y,y')= f(x,y) \sqrt{1+y'^2} dx$$
Substituting $L_y(x,y,y')=f_y(x,y) \sqrt{1+y'^2}, \ L_{y'}(x,y,y')= f(x,y) \frac{y'}{\sqrt{1+y'^2}}$, I got the following:$$f_y(1+y'^2)-f_x y'- f y''+ \frac{f (y')^2}{(1+y'^2)}=0$$
Can we get from this relation to the desired one, or have I done something wrong? (Thinking)