- #1
zetafunction
- 391
- 0
given the function (or distribution)
[tex] \sum_{n=0}^{\infty} f(E_n,u )= Z(u) [/tex] for 'f' an arbitrary function and [tex] E_n [/tex] a set of eigenvalues of a certain operator [tex] f (L) [/tex] with L self adjoint so all the eigenvalues are real , could we obtain the form of 'L' from Z(u) ??
[tex] \sum_{n=0}^{\infty} f(E_n,u )= Z(u) [/tex] for 'f' an arbitrary function and [tex] E_n [/tex] a set of eigenvalues of a certain operator [tex] f (L) [/tex] with L self adjoint so all the eigenvalues are real , could we obtain the form of 'L' from Z(u) ??