- #36
olgerm
Gold Member
- 533
- 34
##dF=\omega^2\ R\ \rho\ dR\ dA##
##dF=dA\ \sigma## and therefore
##dA\ \sigma=\omega^2\ R\ \rho\ dR\ dA##
##\sigma=\omega^2\ R\ \rho\ dR##
##\omega=\sqrt{\frac{\sigma}{R\ \rho\ dR}}##
that can't be right because ##dR## remains in. What the correct way for calculating max ##\omega##?
How to calculate maximum ##\omega## from this?Nugatory said:Yes, that is the necessary force.
##dF=dA\ \sigma## and therefore
##dA\ \sigma=\omega^2\ R\ \rho\ dR\ dA##
##\sigma=\omega^2\ R\ \rho\ dR##
##\omega=\sqrt{\frac{\sigma}{R\ \rho\ dR}}##
that can't be right because ##dR## remains in. What the correct way for calculating max ##\omega##?