MHB Can We Prove This Inequality Challenge IV?

AI Thread Summary
The inequality challenge involves proving that $\dfrac{1}{\sqrt{4x}} \le \left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right) < \dfrac{1}{\sqrt{2x}}$. A sequence defined as $a_{n} = \prod_{k=1}^{n} (1 - \frac{1}{2k})$ is introduced, which satisfies the difference equation $a_{n+1} - a_{n} = - \frac{a_{n}}{2n}$. This sequence approximates the ordinary differential equation $y' = -\frac{1}{2x}$, leading to the conclusion that $a_{n} \sim \frac{a_{1}}{\sqrt{n}}$. The discussion emphasizes the mathematical derivation and implications of the inequality.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\dfrac{1}{\sqrt{4x}}\le\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)<\dfrac{1}{\sqrt{2x}}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\dfrac{1}{\sqrt{4x}}\le\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)<\dfrac{1}{\sqrt{2x}}$.

[sp]Setting $\displaystyle a_{n}= \prod_{k=1}^{n} (1 - \frac{1}{2\ k})$, You can verify that $a_{n}$ obeys to the difference equation...

$\displaystyle a_{n+1} - a_{n} = - \frac{a_{n}}{2\ n}, a_{1} = \frac{1}{2}\ (1)$But (1) approximates the ODE $\displaystyle y^{\ '} = - \frac{1}{2\ x}$ the solution of which is $\displaystyle y = \frac{c}{\sqrt{x}}$, where is $c= y(1)$, so that is $a_{n} \sim \frac{a_{1}}{\sqrt{n}}$ and that leads to the conclusion.[/sp]

Kind regards

$\chi$ $\sigma$
 
Thanks for participating, chisigma!:)

Solution suggested by other:

Let $A=\left( \dfrac{1}{2} \right)\left( \dfrac{3}{4} \right)\cdots\left( \dfrac{2x-1}{2x} \right)$ and $B=\left( \dfrac{2}{3} \right)\left( \dfrac{4}{5} \right)\cdots\left( \dfrac{2x-2}{2x-1} \right)$

We have $AB=\dfrac{1}{2x}$.

Notice that $\dfrac{1}{2}<\dfrac{2}{3}<\dfrac{3}{4}<\cdots<\dfrac{2x-1}{2x}$, $\therefore 2A\ge B$ so $2A^2 \ge AB=\dfrac{1}{2x}$ and from here we get$A\ge \dfrac{1}{\sqrt{4x}}$.

On the other hand, we have $A<B$, hence $A^2<AB=\dfrac{1}{2x}$ and from here we get $A<\dfrac{1}{\sqrt{2x}}$.

And therefore we reach to the desired inequality.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top