- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I am looking at the following:
I am looking at the following:
- Show that $\displaystyle{\text{exp}(1)=\sum_{k=0}^{\infty}\frac{1}{k!}=e}$ with $\displaystyle{e:=\lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n}$.
Hint: Use the binomial theorem and compare with the partial sum $s_n$ of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$. - Calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places and compare with $e$.
- Show that the differenz of the $n$-th parial sum of the series $\sum_{k=0}^{\infty}\frac{1}{k!}$ can be estimated to $e$ by $0<e-s_n<\frac{1}{n!n}$.
- We have the partial sum $$s_n=\sum_{k=0}^n\frac{1}{k!}$$
By the binomial theorem we have that $$\left (1+\frac{1}{n}\right )^n=\sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}$$
We have that \begin{align*}\binom{n}{k}\frac{1}{n^k}&=\frac{n!}{k!\cdot (n-k)!}\cdot \frac{1}{n^k}\\ & =\frac{(n-k+1) \cdot \ldots \cdot (n-1) \cdot n}{k!}\cdot \frac{1}{n^k}\\ & =\frac{1}{k!}\cdot \frac{(n-k+1)\cdot \ldots \cdot (n-1) \cdot n}{n^k}\\ & =\frac{1}{k!}\cdot \frac{n-k+1}{n}\cdot \ldots \cdot \frac{n-1}{n}\cdot \frac{n}{n}\\ & =\frac{1}{k!}\cdot \left (1-\frac{k-1}{n}\right )\cdot \ldots \cdot \left (1-\frac{1}{n}\right )\cdot 1\\ & \leq \frac{1}{k!}\end{align*}We want to find also an upper bound.
By the binomial theorem we have that $$\left (1+\frac{1}{n+1}\right )^{n+1}=\sum_{k=0}^{n+1}\binom{n+1}{k}\frac{1}{(n+1)^k}$$
\begin{align*}\binom{n+1}{k}\frac{1}{(n+1)^k}&=\frac{(n+1)!}{k!\cdot ([n+1]-k)!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{([n+1]-k+1)\cdot \ldots \cdot n\cdot (n+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & \geq \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{k!}\cdot \frac{1}{(n+1)^k} \\ & =\frac{1}{k!}\cdot \frac{([n+1]-k+1)\cdot \ldots \cdot ([n+1]-k+1)\cdot ([n+1]-k+1)}{(n+1)^k}\\ & =\frac{1}{k!}\cdot \frac{[n+1]-k+1}{n+1}\cdot \ldots \cdot \frac{[n+1]-k+1}{n+1}\cdot \frac{[n+1]-k+1}{n+1} \end{align*}
How can we continue? (Wondering) So, we will get \begin{align*}&\binom{n}{k}\frac{1}{n^k}\leq \frac{1}{k!}\leq \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \sum_{k=0}^n\binom{n}{k}\frac{1}{n^k}\leq \sum_{k=0}^n\frac{1}{k!}\leq \sum_{k=0}^n \binom{n+1}{k}\frac{1}{(n+1)^k}\leq \sum_{k=0}^{n+1} \binom{n+1}{k}\frac{1}{(n+1)^k} \\ & \Rightarrow \left (1+\frac{1}{n}\right )^n \leq s_n \leq \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow \lim_{n\rightarrow \infty}\left (1+\frac{1}{n}\right )^n \leq \lim_{n\rightarrow \infty}s_n \leq \lim_{n\rightarrow \infty} \left (1+\frac{1}{n+1}\right )^{n+1} \\ & \Rightarrow e \leq \sum_{k=0}^{\infty}\frac{1}{k!} \leq e \\ & \Rightarrow \sum_{k=0}^{\infty}\frac{1}{k!}=e\end{align*}
Is everything correct? (Wondering) - Do we calculate $s_n$ and $\left (1+\frac{1}{n}\right )^n$ for $n=10$ and $n=100$ with exactly $12$ decimal places with the calculator, or is it meant to do something else here? (Wondering)
- We have that
$$e-s_n=\sum_{k=0}^{\infty}\frac{1}{k!}-\sum_{k=0}^n\frac{1}{k!}=\sum_{k=n+1}^{\infty}\frac{1}{k!}$$
We have that $\sum_{k=n+1}^{\infty}\frac{1}{k!}$ is popsitive, sinve every term is positiv. So, $0<e-s_n$.
Could you give me a hint how we could get the upper bound? (Wondering)