- #1
karush
Gold Member
MHB
- 3,269
- 5
$\displaystyle
\int {\frac{\sqrt{x^2-9}}{x}}\ dx
$
using
$\displaystyle
x=3\sec{\theta}\ \ \ dx=3\sin{\theta}\sec^2{\theta}\ d\theta
$
so then
$\displaystyle
\int {\frac{3\tan{\theta}}{3\sec{\theta}}}\ 3\sin{\theta}\sec^2{\theta}\ d\theta
\Rightarrow 3\int {\tan^2{\theta}}\ d\theta
$
the answer to this is
$\displaystyle
\sqrt{x^2-9}-3\sec^{-1}\left(x/3\right)+C
$
but after trying about 5 times can't seem to arrive at it..
\int {\frac{\sqrt{x^2-9}}{x}}\ dx
$
using
$\displaystyle
x=3\sec{\theta}\ \ \ dx=3\sin{\theta}\sec^2{\theta}\ d\theta
$
so then
$\displaystyle
\int {\frac{3\tan{\theta}}{3\sec{\theta}}}\ 3\sin{\theta}\sec^2{\theta}\ d\theta
\Rightarrow 3\int {\tan^2{\theta}}\ d\theta
$
the answer to this is
$\displaystyle
\sqrt{x^2-9}-3\sec^{-1}\left(x/3\right)+C
$
but after trying about 5 times can't seem to arrive at it..