Can Work-Energy Formula Be Used to Solve Ball-Spring Collision?

  • Thread starter Thread starter walking
  • Start date Start date
  • Tags Tags
    Ball Spring
AI Thread Summary
The discussion focuses on the application of the work-energy formula to analyze a ball-spring collision. The initial attempt incorrectly equates the work done on the ball and spring, leading to an erroneous final velocity expression. It is clarified that the energy stored in the spring during the collision was not accounted for in the calculations. Additionally, the importance of using conservation of momentum alongside the work-energy approach is emphasized. Ultimately, the correct final velocity can be derived using the collision approach, which incorporates these principles accurately.
walking
Messages
73
Reaction score
8
Homework Statement
A ball collides with a spring and they stick together at maximum compression of the spring. Find the final speed of the spring.
Relevant Equations
Conservation of momentum
qWHK8.png


I completely missed the collisions approach when I first tried to solve this and tried using the work-energy formula. I am wondering if this approach can be made to work? Here is my attempt:

So I let the work done on the ball be ##W_b## and work done on spring be ##W_s##. Then $$W_b=\Delta K = \frac{1}{2}m_b v^2-\frac{1}{2}m_bv_i^2$$ and $$W_s=\Delta K=\frac{1}{2}m_sv^2-0=\frac{1}{2}m_sv^2$$, where the final velocities are equal due to sticking together. Now I said that since the only force acting on spring is from the ball and the only force acting on the ball is the spring, then intuitively ##W_b=-Ws##. So $$\frac{1}{2}m_b(v_i^2-v^2)=\frac{1}{2}m_sv^2$$ or $$(m_s+m_b)v^2=m_bv_i^2$$ or $$v=v_i\sqrt{\frac{m_b}{m_s+m_b}}$$. But this is wrong unfortunately (answer is ##\frac{v_im_b}{m_s+m_b}## which I know how to obtain using the collisions approach).
 
Physics news on Phys.org
While you think you found the work done on the spring, what you actually expressed was the change in KE of the gun. And you set the decrease in KE of the bullet equal to the increase in KE of the gun. Ah, but some of that energy gets stored in the spring -- you left that out.

(You do need to use conservation of momentum as well.)
 
  • Like
Likes Steve4Physics
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top