- #1
walking
- 73
- 8
- Homework Statement
- A ball collides with a spring and they stick together at maximum compression of the spring. Find the final speed of the spring.
- Relevant Equations
- Conservation of momentum
I completely missed the collisions approach when I first tried to solve this and tried using the work-energy formula. I am wondering if this approach can be made to work? Here is my attempt:
So I let the work done on the ball be ##W_b## and work done on spring be ##W_s##. Then $$W_b=\Delta K = \frac{1}{2}m_b v^2-\frac{1}{2}m_bv_i^2$$ and $$W_s=\Delta K=\frac{1}{2}m_sv^2-0=\frac{1}{2}m_sv^2$$, where the final velocities are equal due to sticking together. Now I said that since the only force acting on spring is from the ball and the only force acting on the ball is the spring, then intuitively ##W_b=-Ws##. So $$\frac{1}{2}m_b(v_i^2-v^2)=\frac{1}{2}m_sv^2$$ or $$(m_s+m_b)v^2=m_bv_i^2$$ or $$v=v_i\sqrt{\frac{m_b}{m_s+m_b}}$$. But this is wrong unfortunately (answer is ##\frac{v_im_b}{m_s+m_b}## which I know how to obtain using the collisions approach).