- #1
Cpt Qwark
- 45
- 1
Homework Statement
Prove that:
[tex]x=8sin2t+6cos2t[/tex] is undergoing S.H.M.
(Not too sure about how to prove for solution.)
Homework Equations
Solution for S.H.M. [tex]x=asin(nt+α)[/tex] is [tex]\frac{d^{2}x}{dy^{2}}=-n^2x[/tex]
The Attempt at a Solution
[tex]r=\sqrt{8^{2}+6^{2}}=10\\α=tan^{-1}\frac{3}{4}\\∴x=10sin(2t+tan^{-1}\frac{3}{4})[/tex]
Differentiating with respect to time: [tex]\frac{dx}{dt}=20cos(2t+tan^{-1}\frac{3}{4})\\\frac{d^{2}x}{dt^{2}}=-40sin(2t+tan^{-1}\frac{3}{4})[/tex]