- #1
mets19
- 1
- 0
Hi all,
Supppose that n > 0 and 0 < x < n are integers and x is relatively prime to n, show that there is an integer y with the property:
x*y is congruent to 1 (mod n)
I have attempted the following, I am not sure if I am on the right track:
1 = xy + qn which implies 1 - xy = qn
n|(1-xy) which implies q(1-xy) = n
so if I divide q in the first equation i get [tex]\frac{1-xy}{q}[/tex]=n which is equal to q(1-xy)=n.
Thanks in advance
Maunil
Supppose that n > 0 and 0 < x < n are integers and x is relatively prime to n, show that there is an integer y with the property:
x*y is congruent to 1 (mod n)
I have attempted the following, I am not sure if I am on the right track:
1 = xy + qn which implies 1 - xy = qn
n|(1-xy) which implies q(1-xy) = n
so if I divide q in the first equation i get [tex]\frac{1-xy}{q}[/tex]=n which is equal to q(1-xy)=n.
Thanks in advance
Maunil
Last edited: