- #1
C0nfused
- 139
- 0
Hi everybody,
I have one question about vectors of R^3:
First of all, a point is described by its co-ordinates (x,y,z).
A vector r is described in this way: r=ax+by+cz ,where {x,y,z} is the standard basis (the numbers a,b,c are the "coordinates" of the vector). But i have seen in several books that vectors can be written like this: r =(x,y,z) where x,y,z are its co-ordinates, as long as the basis is clearly stated. So when we write (x,y,z) we may mean the point, or the vector? For example, if we define a function f:R^3->R^3: (x,y,z)->(f1(x,y,z),f2(x,y,z),f3(x,y,z)) , we can think of f(x,y,z) both as a point and a vector? I mean, can we write
f(a,b,c)=f1(a,b,c)x+f2(a,b,c)y+f3(a,b,c)z ?
I hope this makes sense.
Thanks
I have one question about vectors of R^3:
First of all, a point is described by its co-ordinates (x,y,z).
A vector r is described in this way: r=ax+by+cz ,where {x,y,z} is the standard basis (the numbers a,b,c are the "coordinates" of the vector). But i have seen in several books that vectors can be written like this: r =(x,y,z) where x,y,z are its co-ordinates, as long as the basis is clearly stated. So when we write (x,y,z) we may mean the point, or the vector? For example, if we define a function f:R^3->R^3: (x,y,z)->(f1(x,y,z),f2(x,y,z),f3(x,y,z)) , we can think of f(x,y,z) both as a point and a vector? I mean, can we write
f(a,b,c)=f1(a,b,c)x+f2(a,b,c)y+f3(a,b,c)z ?
I hope this makes sense.
Thanks
Last edited: