- #1
Amad27
- 412
- 1
Hello,
Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.
$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$
Let $\delta' = \min(\delta_1, \delta_2)$
Let $\delta' < \delta$
Therefore, $f(x) = g(x)$ for this interval $\delta'$
This gives us:
$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|f(x) - M| < \epsilon$ for $|x - a| <\delta_2$
Thus, what is required is to prove $M = L$
Assume $M \ne L$
Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.
$|f(x) - L| < |L - M|/2$ for $|x - a| < \delta_1$
$|f(x) - M| < |L - M|/2$ for $|x - a| <\delta_2$ $|L - M| = |-(f(x) - L) + (f(x) - M)|$
The triangle inequality states,
$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$
Then,
$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$
Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.
$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.
$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$
Let $\delta' = \min(\delta_1, \delta_2)$
Let $\delta' < \delta$
Therefore, $f(x) = g(x)$ for this interval $\delta'$
This gives us:
$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|f(x) - M| < \epsilon$ for $|x - a| <\delta_2$
Thus, what is required is to prove $M = L$
Assume $M \ne L$
Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.
$|f(x) - L| < |L - M|/2$ for $|x - a| < \delta_1$
$|f(x) - M| < |L - M|/2$ for $|x - a| <\delta_2$ $|L - M| = |-(f(x) - L) + (f(x) - M)|$
The triangle inequality states,
$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$
Then,
$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$
Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.
$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$