Can you check my proof for a limit formula

In summary, we discussed a proof that shows when $f(x) = g(x)$ for an interval $\delta > 0$, then the limit of $f(x)$ as $x$ approaches $a$ is equal to the limit of $g(x)$ as $x$ approaches $a$. This was proven by considering the epsilon-delta definition of a limit and using the triangle inequality to show that $M = L$.
  • #1
Amad27
412
1
Hello,

Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$

$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Let $\delta' = \min(\delta_1, \delta_2)$

Let $\delta' < \delta$

Therefore, $f(x) = g(x)$ for this interval $\delta'$

This gives us:

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$

$|f(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Thus, what is required is to prove $M = L$

Assume $M \ne L$

Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.

$|f(x) - L| < |L - M|/2$ for $|x - a| < \delta_1$

$|f(x) - M| < |L - M|/2$ for $|x - a| <\delta_2$ $|L - M| = |-(f(x) - L) + (f(x) - M)|$

The triangle inequality states,

$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Then,

$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.

$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
 
Physics news on Phys.org
  • #2
Hi,

You got the idea but there are some little mistakes, I put it in red

Olok said:
Hello,

Suppose there is a $\delta > 0$ such that $f(x) = g(x)$ when $0 < |x - a| < \delta$. Prove that $\displaystyle \lim_{x\to a} f(x) = \lim_{x \to a} g(x)$.

$|f(x) - L| < \epsilon$ for $|x - a| < \delta_1$
$|g(x) - M| < \epsilon$ for $|x - a| <\delta_2$

Let $\delta' = \min(\delta_1, \delta_2)$

Let $\delta' < \delta$ In essence, we don't let $\delta ' <\delta$, we need to choose $\delta_{1},\delta_{2}$ such that this inequility holds taking $\delta'$ as above

Therefore, $f(x) = g(x)$ for this interval $\delta'$ $\delta '$ is not an interval, but you can skip this sentence.

This gives us:

$|f(x) - L| < \epsilon$ for $|x - a| < $$\delta '$

$|f(x) - M| < \epsilon$ for $|x - a| <$$\delta '$

Thus, what is required is to prove $M = L$

Assume $M \ne L$

Since $\epsilon \in (0, \infty)$, this means $\epsilon = |L - M|/2$ is a possibility.

$|f(x) - L| < |L - M|/2$ for $|x - a| <$$\delta_{3}$

$|f(x) - M| < |L - M|/2$ for $|x - a| <$$\delta_{4}$

Being both $\delta_{3},\delta_{4}<\delta '$

$|L - M| = |-(f(x) - L) + (f(x) - M)|$

The triangle inequality states,

$|f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Then,

$ |L - M|/2 + |L - M|/2 > |f(x) - L| + |f(x) - M| \ge |(f(x) - M) - (f(x) - L)|$

Which is a contradiction, therefore $L \ne M$ is false, and $L = M$ is the true statement.

$\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space
\space\space\space\space\space\space\space\space\space\space \blacksquare$
 

FAQ: Can you check my proof for a limit formula

What is a limit formula?

A limit formula is a mathematical expression that represents the value that a function approaches as its input approaches a specific value.

How do I know if my limit formula is correct?

The best way to check the validity of a limit formula is to use algebraic manipulations and substitution to verify that the limit expression is equal to the expected value. You can also use graphing software or tables to visualize and compare the behavior of the function around the specific value.

Can you explain the steps for finding a limit using a limit formula?

To find a limit using a limit formula, you need to first identify the value that the function is approaching. Then, substitute this value into the limit formula and simplify. If the resulting expression is indeterminate (such as 0/0), you may need to use algebraic manipulations or other techniques to evaluate the limit.

Are there any common mistakes to avoid when using limit formulas?

One common mistake when using limit formulas is to forget to check for discontinuities or other special cases that may affect the limit. It is also important to double check all algebraic manipulations and substitutions to ensure accuracy.

Can you provide an example of using a limit formula to solve a limit?

Sure, let's say we have the function f(x) = (x^2 - 1) / (x - 1) and we want to find the limit as x approaches 1. Using the limit formula, we substitute 1 for x and simplify to get the limit expression as 2. This means that as x gets closer and closer to 1, the value of the function approaches 2.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Replies
2
Views
2K
Back
Top