- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $p,\,q,\,r,\,s,\,t$ be distinct real numbers. Prove that the equation
$(x-p)(x-q)(x-r)(x-s)+(x-p)(x-q)(x-r)(x-t)+(x-p)(x-q)(x-s)(x-t)+(x-p)(x-r)(x-s)(x-t)+(x-q)(x-r)(x-s)(x-t)=0$
has 4 distinct real solutions.
$(x-p)(x-q)(x-r)(x-s)+(x-p)(x-q)(x-r)(x-t)+(x-p)(x-q)(x-s)(x-t)+(x-p)(x-r)(x-s)(x-t)+(x-q)(x-r)(x-s)(x-t)=0$
has 4 distinct real solutions.