- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here is this week's POTW:
-----
Prove the vector identity
$$\nabla(\mathbf{A}\cdot \mathbf{B}) = (\mathbf{A}\cdot \nabla)\mathbf{B} + (\mathbf{B}\cdot \nabla)\mathbf{A} + \mathbf{A}\times (\nabla \times \mathbf{B}) + \mathbf{B}\times (\nabla \times \mathbf{A})$$
-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
-----
Prove the vector identity
$$\nabla(\mathbf{A}\cdot \mathbf{B}) = (\mathbf{A}\cdot \nabla)\mathbf{B} + (\mathbf{B}\cdot \nabla)\mathbf{A} + \mathbf{A}\times (\nabla \times \mathbf{B}) + \mathbf{B}\times (\nabla \times \mathbf{A})$$
-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!