Can you generalize the result for this sum over sum problem?

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Sum
In summary: Let $A_{n}$ and $B_{n}$ be the sums of the squares of the positive integers from $1$ to $n$. $A_{n}-B_{n} = B_{n}\sqrt{2}$Therefore,$A_{n} = B_{2}\left(1+\sqrt{2}\right)$
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Simplify \(\displaystyle \frac{\sum\limits_{k=1}^{99}\sqrt{10+\sqrt{k}}}{ \sum\limits_{k=1}^{99}\sqrt{10-\sqrt{k}}}\)
 
Mathematics news on Phys.org
  • #2
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$
 
  • #3
jacks said:
My Solution:: I have Generalise the result.

Here we have to calculate $\displaystyle \frac{\sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{\sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}} = $

Let $\displaystyle A_{n} = \sum_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}$ and $\displaystyle B_{n} = \sum_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}$ , where $n>1$

Now $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right)^2 = 2n-2\sqrt{n^2-k}$

So $\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{n^2-k}}$

So So $\displaystyle \sum_{k=1}^{n^2-1}\left(\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\right) = \sum_{k=1}^{n^2-1}\sqrt{2}\cdot \sqrt{n-\sqrt{k}}$

So $A_{n}-B_{n} = B_{n}\sqrt{2}$

So $A_{n} = B_{2}\left(1+\sqrt{2}\right)$

So $\displaystyle \frac{A_{n}}{B_{n}} = 1+\sqrt{2}$

Hi jacks,

Thanks for participating and hey, you're a "new blood" to chime in my challenge problems and welcome to the challenge problem forum!(Sun)

Yes, your solution is correct, neatly written and easy to follow, well done!

Here is the way I solve the problem:

I too generalized to compute the value of the expression:

\(\displaystyle \frac{\sum\limits_{k=1}^{n^2-1}\sqrt{n+\sqrt{k}}}{ \sum\limits_{k=1}^{n^2-1}\sqrt{n-\sqrt{k}}}\)

Let:

\(\displaystyle r=\sqrt{n+\sqrt{k}}-\sqrt{n-\sqrt{k}}\)

\(\displaystyle r^2=n+\sqrt{k}-2\sqrt{n^2-k}+n-\sqrt{k}\)

\(\displaystyle r^2=2\left(n^2-\sqrt{n^2-k} \right)\)

Since $0<r$, we may write:

\(\displaystyle r=\sqrt{2}\sqrt{n^2-\sqrt{n^2-k}}\)

Hence, we may rewrite the given expression as:

\(\displaystyle \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n+ \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}= \frac{ \sum \limits_{k=1}^{n^2-1} \left(r+ \sqrt{n- \sqrt{k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)+ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1}(r)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+ \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \frac{ \sum \limits_{k=1}^{n^2-1} \left( \sqrt{2} \sqrt{n- \sqrt{n^2-k}} \right)}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2} \frac{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}{ \sum \limits_{k=1}^{n^2-1} \sqrt{n- \sqrt{k}}}+1\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt{2}+1\)
 

FAQ: Can you generalize the result for this sum over sum problem?

1. What is meant by "Evaluate this sum over sum"?

"Evaluate this sum over sum" refers to the process of finding the value of a sum of two or more sums. This typically involves simplifying the expression and combining like terms to arrive at a final numerical answer.

2. How do you evaluate a sum over sum?

To evaluate a sum over sum, you first simplify each individual sum by combining like terms. Then, you can combine the simplified sums by adding or subtracting them, depending on their signs. The final answer should be a single numerical value.

3. Can you provide an example of evaluating a sum over sum?

Sure, let's say we have the expression 2x + 3y + 4x + 5y. We can simplify this to (2x + 4x) + (3y + 5y) which becomes 6x + 8y. Therefore, the sum over sum is evaluated to be 6x + 8y.

4. Are there any special rules or properties for evaluating sums over sums?

One important rule to keep in mind is the distributive property, which states that a(b + c) = ab + ac. This can be applied to sums over sums to simplify expressions. Additionally, it is important to be careful with the signs of each term when combining the sums.

5. In what situations would you need to evaluate a sum over sum?

Sums over sums can arise in various mathematical and scientific contexts, such as in solving equations, simplifying algebraic expressions, or calculating values in a series. They may also appear in physics or engineering problems when dealing with multiple forces or variables.

Similar threads

Replies
3
Views
2K
Replies
15
Views
2K
Replies
6
Views
1K
Replies
14
Views
2K
Replies
4
Views
2K
Back
Top