Can you help me find the third zero of this complex polynomial?

In summary: Read MoreIn summary, the conversation discusses a problem with a degree 3 complex polynomial and determining its real root. One of the given zeros is a complex number, and the conversation explores using its conjugate to find the other zeros and factorize the polynomial. The fundamental theorem of algebra is mentioned, and it is concluded that the root must be real since complex roots have conjugates. The conversation also mentions trying various methods to find the root, eventually leading to the use of the quadratic formula to find the correct answer.
  • #1
TheFallen018
52
0
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too. So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1. None of these seem right.

So, here's the question.

View attachment 8177

Any help would be amazing. Thank you :)
 

Attachments

  • Screenshot_15.jpg
    Screenshot_15.jpg
    7 KB · Views: 80
Mathematics news on Phys.org
  • #2
TheFallen018 said:
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too. So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1. None of these seem right.

So, here's the question.
Any help would be amazing. Thank you :)

Hi Fallen number 18! ;)

The fact that $-1+2i$ is a zero means that we can factorize the polynomial as $(z-(-1+i2))(z^2 +az+b)$.
When we expand that and match it to the polynomial, we can deduce the values of $a$ and $b$.
Care to try?
 
  • #3
TheFallen018 said:
Hey, first off, I'm not sure if this is the right section. If another section is better, please let me know and I'll be more careful next time.

So, my problem is with a degree 3 complex polynomial. I'm given one zero of the equation, but since it is a complex zero, I can use the conjugate too.
No, you can't. The theorem you are misremembering is that "if z is a zero of a polynomial with real coefficients then so is its conjugate." But this polynomial does not have real coefficients.

So, I already have two of the zeros for the polynomial, and since according to the fundamental theorem of algebra, it should only have one more. Because complex roots also have a conjugate, this suggests that the root is real. However, I'm having a hard time pinning it down. I've come up with a number of answers, and one of my more recent attempts led me to think it was -1.
Well, yes, with z= -1, [tex]z^2= 1[/tex], and [tex]z^3= -1[/tex] so the polynomial becomes [tex]-1+ 3- 2i- 3+ 4i+ 1- 2i= (-1+ 3- 3+ 1)+ (-2i+ 4i- 2i)= 0[/tex].

None of these seem right.

So, here's the question.
Any help would be amazing. Thank you :)
The fact that -1+ 2i is a root means that x+ 1- 2i will divide into [tex]z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i)[/tex] evenly- with no remainder.

In fact, dividing [tex]z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i)[/tex] by z+ 1- 2i gives a quotient of [tex]z^2+ 2z+ 1= (z+ 1)^2[/tex]. The zeros of [tex]z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i)[/tex] are -1 and -1+ 2i with -1 being a double zero.
 
Last edited:
  • #4
I like Serena said:
Hi Fallen number 18! ;)

The fact that $-1+2i$ is a zero means that we can factorize the polynomial as $(z-(-1+i2))(z^2 +az+b)$.
When we expand that and match it to the polynomial, we can deduce the values of $a$ and $b$.
Care to try?

I actually already tried this method. I must have done something wrong the first time, because I didn't get the same answer when I did it just now. It worked out to be $(z-(-1+i2))(z^2 +2z+1)$ which worked nicely in the quadratic formula and got me the right answer. Thanks!

Country Boy said:
No, you can't. The theorem you are misremembering is that "if z is a zero of a polynomial with real coefficients then so is its conjugate." But this polynomial does not have real coefficients. Well, yes, with z= -1, [tex]z^2= 1[/tex], and [tex]z^3= -1[/tex] so the polynomial becomes [tex]-1+ 3- 2i- 3+ 4i+ 1- 2i= (-1+ 3- 3+ 1)+ (-2i+ 4i- 2i)= 0[/tex].The fact that -1+ 2i is a root means that x+ 1- 2i will divide into [tex]z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i)[/tex] evenly- with no remainder.

In fact, dividing [tex]z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i)[/tex] by z+ 1- 2i gives a quotient of [tex]z^2+ 2z+ 1= (z+ 1)^2[/tex]. The zeros of [tex]z^3+ (3- 2i)z^2+ (3- 4i)z+ (1- 2i)[/tex] are -1 and -1+ 2i with -1 being a double zero.

I really like this method. It hadn't occurred to me to factorise the z terms that way. It makes dividing really easy, and then it's just a matter of using the quadratic formula. Thanks for the insight on this one, I'll be using it again for sure.
 

FAQ: Can you help me find the third zero of this complex polynomial?

What is a complex polynomial?

A complex polynomial is a mathematical expression consisting of one or more terms, each containing a variable raised to a non-negative integer power, and coefficients which can be complex numbers. For example, z2 - 3z + 2 is a complex polynomial.

What are complex polynomial zeros?

Complex polynomial zeros are the values of the variable that make the polynomial equal to zero. In other words, they are the solutions to the polynomial equation. For example, the zeros of z2 - 3z + 2 are 1 and 2.

How do you find complex polynomial zeros?

To find complex polynomial zeros, you can use the fundamental theorem of algebra, which states that a polynomial of degree n has n complex roots (counting multiplicity). You can also use techniques such as factoring, synthetic division, or the quadratic formula to solve for the zeros.

Can complex polynomial zeros be imaginary numbers?

Yes, complex polynomial zeros can be imaginary numbers. This means that they are not real numbers and can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit (i2 = -1).

How are complex polynomial zeros related to the graph of the polynomial?

The complex polynomial zeros are the points where the graph of the polynomial intersects the x-axis. In other words, they are the x-intercepts of the polynomial function. The number and location of the zeros can also provide information about the shape and behavior of the graph.

Similar threads

Replies
5
Views
2K
Replies
17
Views
2K
Replies
3
Views
1K
Replies
8
Views
3K
Replies
8
Views
3K
Back
Top