- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Given a nonempty set $A$ of positive integers, let $B$ be a subset of $A$ such that $\dfrac{m}{2}\notin A$ whenever $m\in B$. If $n$ is a positive number, prove that the partitions of $n$ into distinct parts selected from $A$ is equinumerous with the partitions of $n$ into parts selected from $B$.
-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
-----
Given a nonempty set $A$ of positive integers, let $B$ be a subset of $A$ such that $\dfrac{m}{2}\notin A$ whenever $m\in B$. If $n$ is a positive number, prove that the partitions of $n$ into distinct parts selected from $A$ is equinumerous with the partitions of $n$ into parts selected from $B$.
-----
Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!