MHB Can you prove that Triangle $ABC$ is Isosceles?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Triangle $ABC$ has the following property: there is an interior point $P$ such that $\angle PAB=10^{\circ},\, \angle PBA=20^{\circ}, \angle PCA=30^{\circ}$, and $\angle PAC = 40^{\circ}$. Prove that triangle $ABC$ is isosceles.
 
Mathematics news on Phys.org
My solution:
Isosceles Triangle ABC.png
Let

i. $\triangle ABQ$ be an isosceles triangle where $\angle QAB=\angle QBA=20^{\circ}$ and the points $B, P$ and $Q$ are collinear and
ii. $\triangle ACR$ be another isosceles triangle where $\angle RAC=\angle RCA=30^{\circ}$ and the points $C, R$ and $P$ are collinear.

Consider $\triangle ABQ$, by applying the Sine Rule, we get
$\dfrac{AB}{\sin 140^{\circ}}=\dfrac{BQ}{\sin 20^{\circ}}\implies AB=2BQ\cos 20^{\circ}$

Now, in order to relate $AC$ in terms of $BQ$, we do the following:
$\dfrac{AC}{\sin 120^{\circ}}=\dfrac{AR}{\sin 30^{\circ}}\\ \dfrac{AR}{\sin 110^{\circ}}=\dfrac{AP}{\sin 60^{\circ}}\\ \dfrac{AP}{\sin 140^{\circ}}=\dfrac{AQ}{\sin 30^{\circ}}\\ \implies AC=\dfrac{\sin 120^{\circ}}{\sin 30^{\circ}}\dfrac{\sin 110^{\circ}}{\sin 60^{\circ}}\dfrac{\sin 140^{\circ}}{\sin 30^{\circ}}AQ=4\sin 70^{\circ}\sin 40^{\circ}BQ=4\cos 20^{\circ}\sin 40^{\circ}BQ$

Last, we consider $\triangle ABC$, by applying the Cosine Rule, we get
$\begin{align*}BC^2&=AB^2+AC^2-2ABAC\cos 50^{\circ}\\&=(2BQ\cos 20^{\circ})^2+(4\cos 20^{\circ}\sin 40^{\circ}BQ)^2-2(2BQ\cos 20^{\circ})(4\cos 20^{\circ}\sin 40^{\circ}BQ)\sin 40^{\circ}\\&=4BQ^2\cos^2 20^{\circ}(1+4\sin^2 40^{\circ}-4\sin^2 40^{\circ})\end{align*}\\ \therefore BC=2BQ\cos 20^{\circ}$

Hence, we have proved that $AB=BC\ne AC$ and that $\triangle ABC$ is isosceles.

Remark: I apologize for attaching a triangle that is so lacking in the labeling of the measure of angles. I wanted to use TiKZ to render my triangle initially but since we have disabled it (temporarily) in order to fix some other technical issue, and that I thought it was time to post solution to this challenge by now, it left me no choice but have to go ahead to use the far less than satisfactory diagram. But I hope it does justice to its purpose and let you make sense of my argument.
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top