MHB Can You Prove the Floor Function Challenge for Real Numbers?

AI Thread Summary
The discussion revolves around proving the equation involving the floor function, specifically that the sum of the floor function from k=0 to infinity equals the floor of x for all real numbers x. Participants clarify that the expression is indeed a sum, not a limit, addressing initial confusion. A typo in the original post was corrected, and appreciation was expressed for contributions to the challenge. The solution incorporates Hermite's identity as part of the proof. Overall, the thread emphasizes collaboration in solving mathematical challenges.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
For all real $x$, prove that $\displaystyle\sum_{k=0}^{\infty} \left\lfloor\dfrac{x+2^k}{2^{k+1}}\right\rfloor=\lfloor x\rfloor$.
 
Last edited:
Mathematics news on Phys.org
Yes, it's supposed to be a sum, not a limit, in case anyone else was confused (can't believe nobody pointed it out).
 
Hi Bacterius,

Yep, you're right...sorry for making such a silly typo and thanks for pointing it out!

I've just fixed the typo. Thanks again.:)
 
Let $x$ be real, $n = \lfloor{x}\rfloor$, and for all integers $k \ge 0$ set

$A(k) = \left\lfloor{\frac{n+1}{2}}\right\rfloor + \left\lfloor{\frac{n+2}{4}}\right\rfloor + \cdots + \left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor + \left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor.$

Since $\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor$ is always an integer,

$\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor = \left\lfloor{\dfrac{\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor+1}{2}}\right\rfloor + \left\lfloor{\dfrac{\left\lfloor{\frac{n}{2^{k+1}}}\right\rfloor}{2}}\right\rfloor = \left\lfloor{\dfrac{\frac{n}{2^{k+1}}+1}{2}}\right\rfloor + \left\lfloor{\dfrac{\frac{n}{2^{k+1}}}{2}}\right\rfloor = \left\lfloor{\frac{n+2^{k+1}}{2^{k+2}}}\right\rfloor + \left\lfloor{\frac{n}{2^{k+2}}}\right\rfloor.$

Therefore $A(k+1) = A(k)$ for all $k$, i.e., $A(k)$ is constant. The value of the constant is

$A(0) = \left\lfloor{\frac{n+1}{2}}\right\rfloor + \left\lfloor{\frac{n}{2}}\right\rfloor = n$,

since $n$ is an integer. Thus $A(k) = n$ for all $k \ge 0$. Let $2^{k_0}$ is the highest power of $2$ not exceeding $n$. For all $k \ge k_0$, $\left\lfloor{n/2^{k+1}}\right\rfloor = 0$ and thus

$n = A(k) = \left\lfloor{\frac{n+1}{2}}\right\rfloor + \left\lfloor{\frac{n+2}{4}}\right\rfloor + \cdots + \left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor.$

This shows that

$\sum_{k = 0}^\infty
\left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor = n.$

Since for each $k \ge 0$,

$\left\lfloor{\frac{n+2^k}{2^{k+1}}}\right\rfloor =\left\lfloor{\frac{x+2^k}{2^{k+1}}}\right\rfloor$,

it is also the case that

$\sum_{k = 0}^\infty \left\lfloor{\frac{x+2^k}{2^{k+1}}}\right\rfloor = n.$
 
Thanks, Euge for participating in this challenge problem.:) Your proof is great!

Here is the solution uses the Hermite's identity in the proof:

From the Hermite Identity, we have $\displaystyle\sum_{k=0}^{n-1} \left\lfloor x+\dfrac{k}{n}\right\rfloor=\lfloor nx\rfloor$ and taking $n=2$ we then have

$\displaystyle\sum_{k=0}^{1} \left\lfloor x+\dfrac{k}{2}\right\rfloor=\lfloor 2x\rfloor$

i.e. $\left\lfloor x\right\rfloor+\left\lfloor x+\dfrac{1}{2}\right\rfloor=\lfloor 2x\rfloor$ and rewriting to make $\displaystyle \left\lfloor x+\dfrac{1}{2}\right\rfloor$ as the subject gives

$\displaystyle \left\lfloor x+\dfrac{1}{2}\right\rfloor=\lfloor 2x\rfloor-\left\lfloor x\right\rfloor$

Note that we can make full use of this identity, as we can have

$\displaystyle \left\lfloor \dfrac{x}{2}+\dfrac{1}{2}\right\rfloor=\lfloor x\rfloor-\left\lfloor \dfrac{x}{2}\right\rfloor$

$\displaystyle \left\lfloor \dfrac{x}{4}+\dfrac{1}{2}\right\rfloor=\left\lfloor \dfrac{x}{2}\right\rfloor-\left\lfloor \dfrac{x}{4}\right\rfloor$

and so on and so forth.

Now, back to the question, expand the sum given in sigma notation into an explicit sum yields:

$\displaystyle\sum_{k=0}^{\infty} \left\lfloor\dfrac{x+2^k}{2^{k+1}}\right\rfloor$

$=\left\lfloor\dfrac{x+1}{2}\right\rfloor+\left\lfloor\dfrac{x+2}{4}\right\rfloor+\left\lfloor\dfrac{x+4}{8}\right\rfloor+\cdots$

$=\left\lfloor\dfrac{x}{2}+\dfrac{1}{2}\right\rfloor+\left\lfloor\dfrac{x}{4}+\dfrac{1}{2}\right\rfloor+\left\lfloor\dfrac{x}{8}+\dfrac{1}{2}\right\rfloor+\cdots$

$=\left\lfloor x\right\rfloor-\left\lfloor \dfrac{x}{2}\right\rfloor+\left\lfloor \dfrac{x}{2}\right\rfloor-\left\lfloor \dfrac{x}{4}\right\rfloor+\left\lfloor \dfrac{x}{4}\right\rfloor-\left\lfloor \dfrac{x}{8}\right\rfloor+\cdots$

$=\left\lfloor x\right\rfloor-\cancel{\left\lfloor \dfrac{x}{2}\right\rfloor}+\cancel{\left\lfloor \dfrac{x}{2}\right\rfloor}-\cancel{\left\lfloor \dfrac{x}{4}\right\rfloor}+\cancel{\left\lfloor \dfrac{x}{4}\right\rfloor}-\cancel{\left\lfloor \dfrac{x}{8}\right\rfloor}+\cdots$

$=\left\lfloor x\right\rfloor$

and we're done.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top