- #1
lfdahl
Gold Member
MHB
- 749
- 0
Prove, that for all natural numbers, $a$ and $b$, with $b > a$:
\[\frac{ab}{(a,b)}+\frac{(a+1)(b+1)}{(a+1,b+1)}\geq \frac{2ab}{\sqrt{b-a}}\]
where $(m,n)$ denotes the greatest common divisor of the natural numbers $m$ and $n$.
\[\frac{ab}{(a,b)}+\frac{(a+1)(b+1)}{(a+1,b+1)}\geq \frac{2ab}{\sqrt{b-a}}\]
where $(m,n)$ denotes the greatest common divisor of the natural numbers $m$ and $n$.