MHB Can you prove this floor function challenge involving square roots?

AI Thread Summary
The discussion centers on proving the equality $\left\lfloor{\sqrt{n}+\sqrt{n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor$ for all positive integers $n$. Participants share various approaches to demonstrate this mathematical statement, emphasizing the use of properties of square roots and floor functions. The conversation highlights the importance of rigorous proof techniques in number theory. Contributions include detailed calculations and logical reasoning to validate the equality. Overall, the challenge fosters engagement and collaboration among members interested in mathematical proofs.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\left\lfloor{\sqrt{n}+\sqrt{n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor$ for any positive integer $n$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\left\lfloor{\sqrt{n}+\sqrt{n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor$ for any positive integer $n$.

LHS = $\lfloor{\sqrt{n}+\sqrt{n+1}}\rfloor $
= $\lfloor\sqrt{(\sqrt{n}+\sqrt{n+1})^2}\rfloor $
= $\lfloor\sqrt{n+n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{(n+\dfrac{1}{2})^2 + \dfrac{3}{4}}}\rfloor $
= $\lfloor\sqrt{2n+1+\sqrt{(2n+1)^2 + 3}}\rfloor $

now realising that integral part of square root of x and square root of x + t where t is less than 1 are sameso we need to find the integral part of $\sqrt{(2n+1)^2 + 3}$

$(2n+1)^2 + 3\gt(2n+1)^2$
and $(2n+1)^2 + 3\lt(2n+2)^2$ as $(2n+2)^2-(2n+1)^2 = 4n + 3$so integral part of $\sqrt{(2n+1)^2 + 3}$ = (2n + 1)

so LHS = $\lfloor\sqrt{2n+1+2n+1}\rfloor $
= $\lfloor\sqrt{4n+2}\rfloor $
= RHS
 
Last edited:
kaliprasad said:
LHS = $\lfloor{\sqrt{n}+\sqrt{n+1}}\rfloor $
= $\lfloor\sqrt{(\sqrt{n}+\sqrt{n+1})^2}\rfloor $
= $\lfloor\sqrt{n+n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{n(n+1)}}\rfloor $
= $\lfloor\sqrt{2n+1+2\sqrt{(n+\dfrac{1}{2})^2 + \dfrac{3}{4}}}\rfloor $
= $\lfloor\sqrt{2n+1+\sqrt{(2n+1)^2 + 3}}\rfloor $

now realising that integral part of square root of x and square root of x + t where t is less than 1 are sameso we need to find the integral part of $\sqrt{(2n+1)^2 + 3}$

$(2n+1)^2 + 3\gt(2n+1)^2$
and $(2n+1)^2 + 3\lt(2n+2)^2$ as $(2n+2)^2-(2n+1)^2 = 4n + 3$so integral part of $\sqrt{(2n+1)^2 + 3}$ = (2n + 1)

so LHS = $\lfloor\sqrt{2n+1+2n+1}\rfloor $
= $\lfloor\sqrt{4n+2}\rfloor $
= RHS

Well done and thanks for participating, kaliprasad!(Yes)

Here's another solution that I want to share with MHB:

It's easy to verify that

$\sqrt{4n+1}<\sqrt{n}+\sqrt{n+1}<\sqrt{4n+3}$ where $n\in N$

Neither $4n+2$ nor $4n+3$ are squares, so $\left\lfloor{\sqrt{4n+1}}\right\rfloor=\left\lfloor{\sqrt{4n+2}}\right\rfloor=\left\lfloor{\sqrt{4n+3}}\right\rfloor$ and the result follows.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top