MHB Can you prove this identity using trigonometric identities?

AI Thread Summary
The discussion focuses on proving two trigonometric identities. The first identity, involving tangent and cotangent, is shown to equal secant times cosecant plus one through algebraic manipulation and simplification. The second identity, which was solved by the original poster, also involves secant and tangent and requires multiplying the numerator and denominator by specific terms for simplification. Participants share hints and steps for solving the first problem, emphasizing the importance of careful algebraic manipulation. The thread concludes with a successful demonstration of the identities using trigonometric relationships.
Drain Brain
Messages
143
Reaction score
0
Help me get started with these problems.


Prove the following$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\sec(A)\csc(A)+1$

$\frac{\sec(A)-\tan(A)}{\sec(A)+\tan(A)}=1-2\sec(A)\tan(A)+2\tan^{2}(A)$

 
Mathematics news on Phys.org
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$
 
Siron said:
Hint for 2: Multiply nominator and denominator with $(\sec(A)-\tan(A))$

Actually, I'm done with prob 2. I need hint for prob 1. Thanks!
 
Hello, Drain Brain!

Prove: .$\frac{\tan A}{1-\cos A} + \frac{\cot A}{1-\tan A} \:=\:\sec A\csc A+1$
$\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A} \:=\: \dfrac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \dfrac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} $

Multiply both fractions by $\frac{\sin A\cos A}{\sin A\cos A}\!:$

$\quad \frac{\sin^2\!A}{\sin A\cos A-\cos^2\!A} + \frac{\cos^2\!A}{\sin A \cos A - \sin^2\!A} $

$\quad =\;\frac{\sin^2\!A}{\cos A(\sin A - \cos A)} + \frac{\cos^2\!A}{-\sin A(\sin A - \cos A)} $

$\quad =\;\frac{\sin^3\!A}{\sin A\cos A(\sin A - \cos A)} - \frac{\cos^3\!A}{\sin A\cos A(\sin A - \cos A)}$

$\quad =\;\frac{\sin^3\!A\,-\,\cos^3\!A}{\sin A\cos A(\sin A\,-\,\cos A)} \;=\;\frac{(\sin A\,-\,\cos A)(\sin^2\!A\,+\,\sin A\cos A\,+\,\cos^2\!A)}{\sin A\cos A(\sin A\,-\,\cos A)}$

$\quad =\;\frac{(\sin^2\!A\,+\,\cos^2\!A)\,+\,\sin A\cos A}{\sin A\cos A} \;=\; \frac{1\,+\,\sin A\cos A}{\sin A\cos A}$

$\quad =\; \frac{1}{\sin A\cos A}\,+\,\frac{\sin A\cos A}{\sin A\cos A} \;=\; \sec A\csc A\,+\,1 $

 
$$\frac{\tan(A)}{1-\cot(A)}+\frac{\cot(A)}{1-\tan(A)}=\frac{\tan^2(A)-\cot(A)}{\tan(A)-1}\Leftrightarrow\frac{u}{1-\frac1u}+\frac{\frac1u}{1-u}$$$$=\frac{\cot(A)(\tan^3(A)-1)}{\tan(A)-1}$$$$=\frac{\cot(A)(\tan(A)-1)(\tan^2(A)+\tan(A)+1)}{\tan(A)-1}$$$$=\cot(A)(\tan^2(A)+\tan(A)+1)$$$$=\tan(A)+1+\cot(A)$$$$=\frac{1}{\cos(A)\sin(A)}+1$$$$=\sec(A)\csc(A)+1$$
 
Nothing more , but you might be interested ,

Let $\sin = u \,\,\,\,\, \cos = v$

$$\frac{\frac{u}{v}}{1-\frac{v}{u}}+\frac{\frac{v}{u}}{1-\frac{u}{v}} = \frac{u^2}{v(u-v)}-\frac{v^2}{u(u-v)}=\frac{u^3-v^3}{uv(u-v)} = \frac{1+uv}{uv} = \frac{1}{uv}+1$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
11
Views
2K
Replies
28
Views
3K
Replies
2
Views
1K
Replies
7
Views
3K
Replies
2
Views
2K
Replies
6
Views
2K
Back
Top