MHB Can You Prove This Number Theory Problem Involving Primes and Coprime Numbers?

AI Thread Summary
For coprime integers \(a\) and \(b\) and a prime \(p \neq 2\), it is proven that the greatest common divisor \(\left(a+b, \frac{a^p+b^p}{a+b}\right)\) can only be \(1\) or \(p\). If \(q\) is a prime divisor of \(a+b\), it cannot divide either \(a\) or \(b\) due to their coprimality. If \(q\) also divides \(\frac{a^p+b^p}{a+b}\), it leads to the conclusion that \(q\) must divide \(p\). Consequently, the only possible common divisors of \(a+b\) and \(\frac{a^p+b^p}{a+b}\) are \(1\) and \(p\). This establishes the relationship between the sums and their divisors in the context of prime numbers.
MountEvariste
Messages
85
Reaction score
0
1. For $(a,b) = 1$ and prime $p\ne 2$, prove that $\displaystyle \left(a+b, \frac{a^p+b^p}{a+b}\right) = 1$ or $p$.
 
Mathematics news on Phys.org
MountEvariste said:
1. For $(a,b) = 1$ and prime $p\ne 2$, prove that $\displaystyle \left(a+b, \frac{a^p+b^p}{a+b}\right) = 1$ or $p$.
[sp]If $q$ is a prime divisor of $a+b$ then $q$ cannot divide $a$ or $b$ (because $a$ and $b$ are coprime).

If $q$ is also a divisor of $\dfrac{a^p+b^p}{a+b}$ then $q$ divides $$\begin{aligned}\dfrac{a^p+b^p}{a+b} &= a^{p-1} - a^{p-2}b + a^{p-3}b^2 - \ldots + b^{p-1} \\ &= (a+b)\bigl(a^{p-2} -2a^{p-3}b + 3a^{p-4}b^2 - \ldots - (p-1)b^{p-2}\bigr) + pb^{p-1} .\end{aligned}$$ Therefore $q$ divides $pb^{p-1}$. But $q$ dnes not divide $b$, so it follows that $q$ divides $p$. Hence the only possible prime divisors of $a+b$ and $\dfrac{a^p+b^p}{a+b}$ (and consequently the only possible common divisors) are $1$ and $p$.
[/sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top