Can you prove this result for any $m,n\in\mathbb{Z}^+$?

In summary: So in summary, we have proved that \[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\] and \[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \] using two different approaches. One was by using the fact that $\cos(x) = \frac{e^{i\cdot x} + e^{-i\cdot x}}{2}$ and the other by using contour integration. Both methods involve manipulating the integrand and using some basic properties of complex numbers. These methods can be generalized to solve similar problems involving
  • #1
sbhatnagar
87
0
Prove that:

\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

where \( n \in \mathbb{N} \). You can use induction, contour integration or any other method you like.
 
Mathematics news on Phys.org
  • #2
sbhatnagar said:
\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]

First note that \[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \}\]

Now since $\cos(x) = \frac{e^{i\cdot x} + e^{-i\cdot x}}{2}$ we find: \[ \displaystyle\int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left(\frac{e^{i\cdot x} + e^{-i\cdot x}}{2} \right)^n dx = \frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \]

By the binomial theorem: \[\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx = \int_0^{\pi/2} e^{i\cdot n\cdot x} \left( \sum_{k=0}^n { \binom{n}{k} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x}}\right) dx = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \cdot e^{i\cdot k \cdot x} \cdot e^{- i\cdot (n-k)\cdot x} dx} = \sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \]

Finally we note that $\int_0^{\pi/2} e^0 dx = \frac{\pi}{2}$ and $\int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx = \frac{e^{i\cdot \pi \cdot k} - 1}{i\cdot 2k} $ for $k> 0$. The latter expression is purely imaginary, thus:
\[\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \Re\{\sum_{k=0}^n { \binom{n}{k} \cdot \int_0^{\pi/2} e^{i\cdot 2k \cdot x} dx} \} = \frac{\pi}{2} \]
Hence:
\[ \displaystyle\int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx = \Re \{ \int_0^{\pi/2} e^{i\cdot n\cdot x} \cos^n(x) dx \} = \Re\{\frac{1}{2^n}\cdot \int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx \} = \frac{1}{2^n}\Re\{\int_0^{\pi/2} e^{i\cdot n\cdot x} \left({e^{i\cdot x} + e^{-i\cdot x}}\right)^n dx\} = \frac{\pi}{2^{n+1}} \square\]
 
Last edited:
  • #3
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $
 
  • #4
Sherlock said:
$\displaystyle n+2\sum_{k=1}^{n-1}(n-k)\cos{kx} = \frac{1-\cos{nx}}{1-\cos{x}}$, thus $\displaystyle I = \int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \int_{0}^{\pi}\left(n+2\sum_{k=1}^{n-1}(n-k)\cos{kx}\right)\;{dx} = n\pi+2\sum_{k=1}^{n-1}(n-k)\int_{0}^{\pi}\cos{kx}\;{dx} = n\pi. $

You have chosen the best method so far. Here are a few more ways to tackle the problem.

Approach 1

Let \( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}=\int_{0}^{\pi}\frac{1-\cos{(n+1)x}}{1-\cos{x}}\;{dx} \).

\( \displaystyle I_{n+1}-I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} -\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\).

Let \( \displaystyle J_n= I_{n+1}-I_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx\)

\( \displaystyle J_{n+1}-J_n= \int_{0}^{\pi}\frac{\sin{ \left\{ \frac{(2n+3)x}{2}\right \}-\sin\left\{ \frac{(2n+1)x}{2}\right \}}}{\sin{\left( \frac{x}{2}\right)}}dx = 2\int_{0}^{\pi} \cos{\left\{ \frac{(2n+2)x}{2}\right\} }dx = 0\)

This means \( \displaystyle J_{n+1}=J_n=J_{n-1}=\cdots=J_1=\pi\)

So \( \displaystyle J_{n}=\pi \ \Rightarrow I_{n+1}-I_n=\pi \)

So \( I_n = \pi+(n-1)\pi = n\pi \)

Approach 2

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} \)

Substitute \( z=e^{ix} \).

\( \displaystyle I_n=\int_{0}^{\pi}\frac{1-\cos{nx}}{1-\cos{x}}\;{dx} = \frac{1}{2}\oint_{C} \frac{1-\frac{z^n +z^{-n}}{2}}{1-\frac{z +z^{-1}}{2}}\frac{dz}{iz}=\frac{1}{2}\oint_{C}\frac{(z^n -1)^2}{iz^n (z-1)^2}dz\)

where C is the unit circle.

Let \( \displaystyle f(z)=\frac{(z^n -1)^2}{iz^n (z-1)^2} \)

\( f(z) \) has pole at \( z=0 \).

\(\displaystyle \text{Res}_{z=0}f(z)=\frac{n}{i} \)

So \(\displaystyle I_n= \pi i\displaystyle \text{Res}_{z=0}f(z)=\frac{n\pi i}{i} =n\pi \)
 
Last edited:
  • #5
Very nice! (Yes)
sbhatnagar said:
You have chosen the best method so far.
It took me ages to come up with that! (Sleepy)
 
  • #6
sbhatnagar said:
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]

Here is a related result you guys might be interested in trying out: \[ \displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^m = \pi \cdot [x^{m\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}\]
for $m,n\in\mathbb{Z}^+$

Notation: $[x^a]\{p(x)\}$ is the coefficient of $x^a$ in $p(x)$.

(Wink)

So for example, for $m=2$ in particular we get: $\displaystyle\int_0^\pi \left(\frac{\sin(n\cdot x)}{\sin(x)}\right)^2 = \pi \cdot [x^{2\cdot (n-1)}] \left\{ \left( \sum_{k=0}^{n-1} x^{2\cdot k} \right)^m\right\}= \pi \cdot [x^{n-1}] \left\{ \left( \sum_{k=0}^{n-1} x^k \right)^2\right\} = \pi \cdot n$ because for each $k\in \{0,1,..,n-1\}$ there is exactly one $j\in \{0,1,...,n-1\}$ such that $k+j = n-1$.
 

FAQ: Can you prove this result for any $m,n\in\mathbb{Z}^+$?

What are trigonometric integrals?

Trigonometric integrals are integrals involving trigonometric functions such as sine, cosine, tangent, secant, etc. They are used to find the area under a curve of a trigonometric function.

How do you solve trigonometric integrals?

Trigonometric integrals can be solved using various techniques such as substitution, integration by parts, trigonometric identities, and partial fractions.

What is the purpose of solving trigonometric integrals?

Solving trigonometric integrals is useful in many areas of science, engineering, and mathematics, as they can be used to find the area, volume, and other important quantities in real-life applications such as physics, mechanics, and astronomy.

Are there any specific strategies for solving trigonometric integrals?

Yes, there are specific strategies for solving different types of trigonometric integrals. For example, for integrals involving powers of sine and cosine, the trigonometric identities can be used, while for integrals involving tangent and secant, substitution is often used.

Can trigonometric integrals be solved using software or calculators?

Yes, some software and calculators have built-in functions for solving trigonometric integrals. However, it is important to understand the concepts and techniques behind solving these integrals in order to use these tools effectively.

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
6
Views
2K
Replies
33
Views
2K
Replies
14
Views
2K
Back
Top