- #1
sbhatnagar
- 87
- 0
Prove that:
\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]
where \( n \in \mathbb{N} \). You can use induction, contour integration or any other method you like.
\[ \int_{0}^{\pi/2} \cos(nx) \cos^n(x) dx =\frac{\pi}{2^{n+1}}\]
\[ \int_{0}^{\pi} \frac{1-\cos(nx)}{1-\cos(x)} dx =n\pi \]
where \( n \in \mathbb{N} \). You can use induction, contour integration or any other method you like.