- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Let $p,\,q,\,r,\,s\,\in[0,\,\pi]$ and we are given that
$2\cos p+6 \cos q+7 \cos r+9 \cos s=0$ and
$2\sin p-6 \sin q+7 \sin r-9 \sin s=0$.
Prove that $3 \cos (p+s)=7\cos(q+r)$.
$2\cos p+6 \cos q+7 \cos r+9 \cos s=0$ and
$2\sin p-6 \sin q+7 \sin r-9 \sin s=0$.
Prove that $3 \cos (p+s)=7\cos(q+r)$.