Can you prove this trigonometric inequality?

In summary, it appears that if $a=b$, then the original inequality holds. If $a>b$, then $1+b^2\leq left \,\, side \leq 1+a^2$ and $1+a^2\leq right \,\, side \leq 1+b^2$. If $a<b$, then $1+a^2\leq left \,\, side \leq 1+b^2$.
  • #1
MarkFL
Gold Member
MHB
13,288
12
Show that :

\(\displaystyle \left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2\)
 
Mathematics news on Phys.org
  • #2
MarkFL said:
Show that :

\(\displaystyle \left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right) \leq 1 + \left( \frac{a + b}{2} \right)^2\)
left side=
\(\displaystyle \left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right)\leq \sqrt{1+a^2}\times \sqrt{1+b^2}\)
$\leq\dfrac{1+a^2+1+b^2}{2}=1+\dfrac {a^2+b^2}{2}$
Are you sure , right side is correct ?
 
Last edited:
  • #3
Albert said:
left side=
\(\displaystyle \left( {\sin x + a\cos x} \right)\left( {\sin x + b\cos x} \right)\leq \sqrt{1+a^2}\times \sqrt{1+b^2}\)
$\leq\dfrac{1+a^2+1+b^2}{2}=1+\dfrac {a^2+b^2}{2}$
Are you sure , right side is correct ?

Yes, it is correct...it appears you are assuming the two sinusoidal factors are in phase with one another, that is for $a=b$. In this case, then your result is equivalent to that which I gave.
 
  • #4
if it is correct then ,we must prove
$\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2=\dfrac {a^2+b^2}{4}+{ab}$
for all $a,b \in R$
${\therefore \dfrac {a^2+b^2}{4}\leq ab}$
how about if ab<0,then it does not fit
 
Last edited:
  • #5
Albert said:
if it is correct then ,we must prove
$\dfrac {a^2+b^2}{2}\leq (\dfrac{a+b}{2})^2=\dfrac {a^2+b^2}{4}+{ab}$
for all $a,b \in R$
${\therefore \dfrac {a^2+b^2}{4}\leq ab}$
how about if ab<0,then it does not fit

It appears you are on the right track here, but have made some algebraic errors.
 
  • #6
sorry ,I have made some algebraic errors:eek:

I will try to use another approach
 
  • #7
Albert said:
sorry ,I have made some algebraic errors:eek:

I will try to use another approach

Your errors are quite minor, and in fact leads to a much simpler approach than I have. (Nod)
 
  • #8
I think ,I should take a rest ,and have a cup of tea or coffee
 
  • #9
for some x,and a,b if left side $\leq 0$
then it holds naturely
now we assume both sides are positive
if a=b then the original inequality holds
if a>b then :$1+b^2\leq left \,\, side \leq 1+a^2$
$1+b^2\leq right \,\, side \leq 1+a^2$
if a<b then :$1+a^2\leq left \,\, side \leq 1+b^2$
$1+a^2\leq right \,\, side \leq 1+b^2$

----------
 
Last edited:
  • #10
My solution:

I first expand the LHS of the inequality and get:

\(\displaystyle ( {\sin x + a\cos x} )( {\sin x + b\cos x})=\sin^2 x+(a+b)\sin x \cos x+ab\cos^2 x\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=(1-\cos^2 x)+(a+b)\sin x \cos x+ab\cos^2 x\)\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\frac{ab+1}{2}+\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x\)
Next, by applying the Cauchy-Schwarz Inequality to the part \(\displaystyle \left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x\) yields

\(\displaystyle \left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x\le\sqrt{\left(\frac{a+b}{2}\right)^2+\left( \frac{ab-1}{2}\right)^2}\cdot\sqrt{\sin^2 2x+\cos^2 2x}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le \sqrt{\left(\frac{a^2b^2+a^2+b^2+1}{4}\right)}\)

\(\displaystyle \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\le \frac{\sqrt{(1+a^2)(1+b^2)}}{2}\)Also, AM-GM inequality tells us that

\(\displaystyle \frac{(1+a^2)+(1+b^2)}{2}\ge\sqrt{(1+a^2)(1+b^2)}\) or

\(\displaystyle \frac{(1+a^2)+(1+b^2)}{4}\ge\frac{\sqrt{(1+a^2)(1+b^2)}}{2}\)

\(\displaystyle \frac{2+a^2+b^2}{4}\ge\frac{\sqrt{(1+a^2)(1+b^2)}}{2}\)Finally, by combining all that we found in the above steps, we can now conclude that

\(\displaystyle ( {\sin x + a\cos x} )( {\sin x + b\cos x})\)

\(\displaystyle =\frac{ab+1}{2}+\left(\frac{a+b}{2}\right)\sin 2x+\left(\frac{ab-1}{2}\right)\cos 2x\)

\(\displaystyle \le \frac{2+a^2+b^2}{4}+\frac{ab+1}{2}\)

\(\displaystyle \le \frac{2+a^2+b^2+2ab+2}{4}\)

\(\displaystyle \le \frac{4+a^2+b^2+2ab}{4}\)

\(\displaystyle \le 1+\frac{a^2+b^2+2ab}{4}\)

\(\displaystyle \le 1+\frac{(a+b)^2}{4}\)

\(\displaystyle \le 1+(\frac{a+b}{2})^2\) (Q.E.D.)
 
  • #11
This is my proof:

Let:

\(\displaystyle A=\tan^{\small{-1}}(a)\)

\(\displaystyle B=\tan^{\small{-1}}(b)\)

Using a linear combination, we may write the inequality as:

\(\displaystyle \sqrt{(1+a^2)(1+b^2)}\sin(x+A)\sin(x+B)\le1+\left(\frac{a+b}{2} \right)^2\)

Let:

\(\displaystyle f(x)=\sin(x+A)\sin(x+B)\)

Thus:

\(\displaystyle f'(x)=\sin(2x+A+B)\)

\(\displaystyle f''(x)=2\cos(2x+A+B)\)

Then $f(x)$ has its maxima for:

\(\displaystyle x=\frac{(2k+1)\pi-(A+B)}{2}\) where \(\displaystyle k\in\mathbb Z\)

We then find:

\(\displaystyle f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)=\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+A \right)\sin\left(\frac{(2k+1)\pi-(A+B)}{2}+B \right)=\)

\(\displaystyle \sin\left(\frac{(2k+1)\pi+A-B}{2} \right)\sin\left(\frac{(2k+1)\pi-A+B}{2} \right)=\)

\(\displaystyle \frac{\cos(A-B)-\cos((2k+1)\pi)}{2}=\frac{\cos(A-B)+1}{2}=\)

\(\displaystyle \frac{\cos(A)\cos(B)+\sin(A)\sin(B)+1}{2}=\)

\(\displaystyle \frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2\sqrt{(1+a^2)(1+b^2)}}\)

Now, we need only show:

\(\displaystyle \sqrt{(1+a^2)(1+b^2)}f\left(\frac{(2k+1)\pi-(A+B)}{2} \right)\le1+\left(\frac{a+b}{2} \right)^2\)

\(\displaystyle \frac{1+ab+\sqrt{(1+a^2)(1+b^2)}}{2}\le1+\left( \frac{a+b}{2} \right)^2\)

\(\displaystyle 2+2ab+2\sqrt{(1+a^2)(1+b^2)}\le4+a^2+2ab+b^2\)

\(\displaystyle 2\sqrt{(1+a^2)(1+b^2)}\le2+a^2+b^2\)

\(\displaystyle 4a^2b^2+4a^2+4b^2+4\le a^4+2a^2b^2+4a^2+b^4+4b^2+4\)

\(\displaystyle 2a^2b^2\le a^4+b^4\)

\(\displaystyle 0\le(a^2-b^2)^2\)
 

FAQ: Can you prove this trigonometric inequality?

What is a trigonometric inequality?

A trigonometric inequality is an inequality that involves trigonometric functions, such as sine, cosine, and tangent. It compares these functions to a constant or to each other, and the goal is to solve for the values that make the inequality true.

How do I solve a trigonometric inequality?

To solve a trigonometric inequality, you must first isolate the trigonometric function on one side of the inequality. Then, use trigonometric identities and properties to simplify the expression. Finally, use the unit circle or a graphing calculator to determine the values that make the inequality true.

What are some common strategies for solving trigonometric inequalities?

Some common strategies for solving trigonometric inequalities include using trigonometric identities, factoring, finding the critical points, and using the unit circle or a graphing calculator to determine the values that make the inequality true.

How is solving a trigonometric inequality different from solving a regular algebraic inequality?

Solving a trigonometric inequality is different from solving a regular algebraic inequality because it involves using trigonometric functions and identities, as opposed to just variables and constants. This means that the solutions may involve angles and radians, rather than just numbers.

What are some real-life applications of trigonometric inequalities?

Trigonometric inequalities have many real-life applications, including in engineering, physics, and astronomy. They can be used to model and solve problems involving angles, distances, and forces, among other things. For example, they can be used to calculate the angle of elevation for a ramp, or to determine the tension in a rope holding an object at an angle.

Similar threads

Replies
11
Views
2K
Replies
1
Views
929
Replies
28
Views
2K
Replies
1
Views
1K
Replies
1
Views
855
Back
Top