- #1
CookieSalesman
- 103
- 5
Suppose you have a set of vectors v1 v2 v3, etc.
However large they are, suppose they span some area, which I think is typically represented by
Span {v1, v2, v3}
But I mean, if you're given these vectors, is there anything wrong with rearranging them? Because there's a theorem- that
"an indexed set S= {v1, v2... vp} of more than one vectors is linearly dependent if at least one vector is in a linear combination of the others."
So if S is linearly dependent, any vector in the set is a combination of the preceeding vectors?
Or did I read that wrong, and it just means a certain vector, possibly more than one is a lin comb of some other vectors?
However the theorem I'm reading seems to really detail that there's something special about "preceeding vectors". So if you have any set, is interchanging vectors allowed?
I feel like that there is nothing wrong with this. Is there some time when this is allowed and it isnt, maybe?
(I've just started linear algebra for a few weeks so I don't know any complex scenarios)
But it seems that this theorem suggests that there's something important to the permutation of these vectors.
However large they are, suppose they span some area, which I think is typically represented by
Span {v1, v2, v3}
But I mean, if you're given these vectors, is there anything wrong with rearranging them? Because there's a theorem- that
"an indexed set S= {v1, v2... vp} of more than one vectors is linearly dependent if at least one vector is in a linear combination of the others."
So if S is linearly dependent, any vector in the set is a combination of the preceeding vectors?
Or did I read that wrong, and it just means a certain vector, possibly more than one is a lin comb of some other vectors?
However the theorem I'm reading seems to really detail that there's something special about "preceeding vectors". So if you have any set, is interchanging vectors allowed?
I feel like that there is nothing wrong with this. Is there some time when this is allowed and it isnt, maybe?
(I've just started linear algebra for a few weeks so I don't know any complex scenarios)
But it seems that this theorem suggests that there's something important to the permutation of these vectors.