- #1
Amer
- 259
- 0
Is it possible to separate imaginary part from the real part in this question
$\sin ^{-1} ( e^{i\theta}) $
I tired to find u such that
$\sin u = e^{i\theta} $
$ \sin u = \cos \theta + i sin \theta $
$ \sin (x + iy) = \cos \theta + i \sin \theta $
$ \sin x \cos iy + \sin iy \cos x = \cos \theta + i \sin \theta $
$\sin x \cosh y + i \sinh y \cos x = \cos \theta + i \sin \theta $
but this is not easy
Thanks
$\sin ^{-1} ( e^{i\theta}) $
I tired to find u such that
$\sin u = e^{i\theta} $
$ \sin u = \cos \theta + i sin \theta $
$ \sin (x + iy) = \cos \theta + i \sin \theta $
$ \sin x \cos iy + \sin iy \cos x = \cos \theta + i \sin \theta $
$\sin x \cosh y + i \sinh y \cos x = \cos \theta + i \sin \theta $
but this is not easy
Thanks