- #1
Chris L T521
Gold Member
MHB
- 915
- 0
Thanks again to those who participated in last week's POTW! Here's this week's problem!
-----
Problem: Let $A$ be an $n\times n$ matrix whose characteristic polynomial is
\[p(\lambda)=\lambda^n+a_1\lambda^{n-1}+\ldots+ a_{n-1}\lambda+ a_n.\]
If $A$ is nonsingular, show that
\[A^{-1}=-\frac{1}{a_n}\left( A^{n-1} + a_1A^{n-2} + \ldots + a_{n-2}A+a_{n-1}I_n\right).\]
-----
Hint:
-----
Problem: Let $A$ be an $n\times n$ matrix whose characteristic polynomial is
\[p(\lambda)=\lambda^n+a_1\lambda^{n-1}+\ldots+ a_{n-1}\lambda+ a_n.\]
If $A$ is nonsingular, show that
\[A^{-1}=-\frac{1}{a_n}\left( A^{n-1} + a_1A^{n-2} + \ldots + a_{n-2}A+a_{n-1}I_n\right).\]
-----
Hint:
Use the Cayley-Hamilton theorem.