- #1
sbhatnagar
- 87
- 0
Fun! Fun! Fun! Here are more entertaining problems:
1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)
2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin^2(x)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)
3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)
4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)
These problems are very simple only if you know the right trick.
1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)
2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin^2(x)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)
3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)
4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)
These problems are very simple only if you know the right trick.
Last edited: