MHB Can You Solve These Challenging Definite Integral Problems?

AI Thread Summary
The discussion presents a series of challenging definite integral problems, highlighting various techniques for solving them. Key strategies include using symmetry and substitution to simplify the integrals, such as transforming variables and leveraging properties of sine and logarithmic functions. Specific integrals are solved step-by-step, demonstrating how to arrive at final results through clever manipulations. The conversation emphasizes the enjoyment and educational value of tackling complex calculus problems. Overall, the thread showcases the beauty of mathematics through intricate integral challenges.
sbhatnagar
Messages
87
Reaction score
0
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)

2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin^2(x)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)

3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)

4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)

These problems are very simple only if you know the right trick.
 
Last edited:
Mathematics news on Phys.org
sbhatnagar said:
Fun! Fun! Fun! Here are more entertaining problems:

1.\( \displaystyle \int_{2}^{4} \frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}dx\)
Put $x \mapsto 6-x$ then we've $ \begin{aligned} I & = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\frac{\sqrt{\ln(3+x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}\;{dx}\end{aligned}$.
Add these together and we've $\begin{aligned}2I = \int_{2}^{4}\frac{\sqrt{\ln(9-x)}+\sqrt{\ln(3+x)}}{\sqrt{\ln(3+x)}+\sqrt{\ln(9-x)}}\;{dx} = \int_{2}^{4}\;{dx} = 2.\end{aligned}$ Therefore $I = 1$.
 
Last edited:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$
 
sbhatnagar said:
3.\( \displaystyle \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^x}\frac{\sin^{6792}(x)}{\sin^{6792}(x)+\cos^{6792}(x)}dx\)
Put $x \mapsto -x$ then we've $\begin{aligned} I = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{-\pi/2}^{\pi/2}\frac{1}{1+4563^{-x}}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Add them to get $\begin{aligned}2I = \int_{-\pi/2}^{\pi/2}\bigg(\frac{1}{1+4563^x}+\frac{1}{1+4563^{-x}}\bigg)\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = 2\int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}.\end{aligned}$
Let $x \mapsto \frac{\pi}{2}-x$ then $\begin{aligned}I = \int_{0}^{\pi/2}\frac{\sin^{6792}(\frac{\pi}{2}-x)}{\sin^{6792}(\frac{\pi}{2}-x)+\cos^{6792}(\frac{\pi}{2}-x)}\;{dx} = \int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} \end{aligned}$, add them to get:
$\begin{aligned}2I = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx}+\int_{0}^{\pi/2}\frac{\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \int_{0}^{\pi/2}\frac{\sin^{6792}{x}+\cos^{6792}{x}}{\sin^{6792}{x}+\cos^{6792}{x}}\;{dx} = \frac{\pi}{2}. \end{aligned}$ Thus $\begin{aligned}I = \frac{\pi}{4}.\end{aligned}$

---------- Post added at 05:07 PM ---------- Previous post was at 04:54 PM ----------

ThePerfectHacker said:
Whenever I teach Calculus I assign the following homework problem (same idea):

$$ \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } ~ dx $$

Let $x \mapsto 2-x$ then $ \begin{aligned} I= \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} = \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$

Therefore $ \begin{aligned} 2I = \int_0^2 \frac{ \sin^{2012} \left( \log (1+x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} + \int_0^2 \frac{ \sin^{2012} \left( \log (3-x) \right) }{ \sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) } \;{dx} \end{aligned}$, thus:
$ \begin{aligned}2I = \int_{0}^{2}\frac{\sin^{2012} \left( \log (1+x) \right) +\sin^{2012} \left( \log (3-x) \right)}{​\sin^{2012} \left( \log(1+x) \right) + \sin^{2012} \left( \log(3-x)\right) }\;{dx} = \int_{0}^{2}\;{dx} = 2. \end{aligned}$ Hence $2I = 2$ and so $I = 1$.

What I find interesting is that the trick also applies to products and sums because the index can be shifted in the same way:

$\displaystyle \int_{a}^{b}f(x)\;{dx} = \int_{a}^{b}f(a+b-x)\;{dx}$, $\displaystyle \sum_{a \le k \le b}f(k) = \sum_{a \le k \le b}f(a+b-k) $ and $\displaystyle ~ \prod_{a \le k \le b}f(k) = \prod_{a \le k \le b}f(a+b-k). $

It's amazing! So you can also create a simple but monstrous looking sum or product when you are teaching these topics too.
 
Last edited:
I think you had a typo on this one; I fixed it so that it's similar to other integrals.
sbhatnagar said:
2.\( \displaystyle \int_{\sqrt{\ln(2)}}^{\sqrt{\ln(3)}}\frac{x \sin(x^2)}{\sin(x^2)+\sin(\ln(6)-x^2)}dx\)
Let $\displaystyle t = x^2$ then $\displaystyle I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}$. Now put $t\mapsto \ln{6}-t$, and we've $\displaystyle I = \frac{1}{2}
\int_{\ln{2}}^{\ln{3}}\frac{\sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} $, therefore:
$\displaystyle 2I = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin{t}}{\sin{t}+\sin(\ln{6}-t)}\;{dt}+\frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{ \sin( \ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\int_{\ln{2}}^{\ln{3}}\frac{\sin{t}+ \sin(\ln{6}-t)}{\sin{t}+\sin(\ln{6}-t)}\;{dt} = \frac{1}{2}\ln\left(\frac{3}{2}\right).$ So $\displaystyle I = \frac{1}{4}\ln\left(\frac{3}{2}\right).$

---------- Post added at 11:25 PM ---------- Previous post was at 10:40 PM ----------

sbhatnagar said:
4.\( \displaystyle \int_{0}^{2} \frac{dx}{(17+8x-4x^2)(e^{6(1-x)}+1)} \)
Let $x\mapsto 2-x$ then $\displaystyle I = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{6(1-x)}+1)}\;{dx} = \int_{0}^{2}\frac{1}{(17+8x-4x^2)(e^{-6(1-x)}+1)}\;{dx}$.
Thus $\displaystyle 2I = \int_{0}^{2}\bigg(\frac{1}{e^{6(1-x)}+1}+\frac{1}{e^{-6(1-x)}+1}\bigg)\frac{1}{(17+8x-4x^2)}\;{dx} = \int_{0}^{2}\frac{1}{17+8x-4x^2}\;{dx},$ therefore:
$\displaystyle 2I = \int_{0}^{2}\frac{1}{2\sqrt{21}(2x+\sqrt{21}-2)}+\frac{1}{2\sqrt{21}(-2x+\sqrt{21}+2)}\;{dx} = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}-2+2x}{\sqrt{21}+2-2x}\bigg|_{0}^{2} = \frac{1}{2\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|$

Therefore $\displaystyle I = \frac{1}{4\sqrt{21}}\ln\bigg|\frac{\sqrt{21}+2}{ \sqrt{21}-2}\bigg|. $ There goes the last one. I had a field day with these integrals today. Thanks! :]


 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top