- #1
sbhatnagar
- 87
- 0
Prove that
\[\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx=\zeta(3)-\frac{\pi^2}{4}\log(2)\]
\[\int_0^1 \frac{\log(1+x^2)}{1+x}dx=\frac{3}{4}\log^2(2) -\frac{\pi^2}{48}\]
\[\int_0^1 \frac{\log(1+x)\log(x)}{1-x}dx=\zeta(3)-\frac{\pi^2}{4}\log(2)\]
\[\int_0^1 \frac{\log(1+x^2)}{1+x}dx=\frac{3}{4}\log^2(2) -\frac{\pi^2}{48}\]