- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Given positive real numbers $a,\,b,\,c$ and $d$ that satisfy the following inequalities:
$a \le 1 \\a+4b \le 17\\a+4b+16c \le273\\a+4b+16c+64d \le4369$
Find the minimum value of $\dfrac{1}{d}+\dfrac{2}{4c+d}+\dfrac{3}{16b+4c+d}+\dfrac{4}{64a+16b+4c+d}$.
$a \le 1 \\a+4b \le 17\\a+4b+16c \le273\\a+4b+16c+64d \le4369$
Find the minimum value of $\dfrac{1}{d}+\dfrac{2}{4c+d}+\dfrac{3}{16b+4c+d}+\dfrac{4}{64a+16b+4c+d}$.