- #1
Hart
- 169
- 0
Homework Statement
The Fourier transform of a function f(x) is given by the product of the Fourier transforms of [tex] cos(\alpha x) [/tex] and [tex] e^{-|x|} [/tex];
[tex]f^{~} = F^{~}\left[cos[\alpha x]\right]F^{~}\left[e^{-|x|}\right][/tex]
Find f(x) and show that it can be written as a real function.
Note: Do not use the Convolution Theorem, instead calculate f(x) by inverse Fourier transforming f(k).
Homework Equations
Through use of Dirac Delta Function:
- [tex]\delta(\alpha - k) = \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{ix(\alpha-k)}dx[/tex]
- [tex]\delta(-\alpha - k) = \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-ix(\alpha+k)}dx[/tex]
The Attempt at a Solution
Since the solution is the product of two Fourier transforms, can calculate them seperately (?!)
Firstly..
[tex]F\left[cos(\alpha x)\right] = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}cos(\alpha x)e^{ikx}dx[/tex]
From Euler's Formula:
[tex] cos(\alpha x) = \frac{1}{2}\left[e^{i\alpha x}+e^{-i\alpha x}\right] [/tex]
Therefore:
[tex]F\left[cos(\alpha x)\right] = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{1}{2}\left[e^{i\alpha x}+e^{-i\alpha x}\right]e^{ikx}dx[/tex]
Hence:
[tex]F\left[cos(\alpha x)\right] = \frac{1}{2\sqrt{2\pi}}\int_{-\infty}^{\infty}\left[e^{i(\alpha -k) x}+e^{-i(\alpha +k) x}\right]dx[/tex]
Then by using Dirac Delta Functions (already stated):
[tex]F\left[cos(\alpha x)\right] = \frac{1}{2 \sqrt{2 \pi}}\left[ 2 \pi \delta(\alpha -k) + 2 \pi \delta (-\alpha -k)\right]dx[/tex]
.. and after some rearranging:
[tex]F\left[cos(\alpha x)\right] = \sqrt{\frac{\pi}{2}}\left[\delta(\alpha -k) + \delta (\alpha +k)\right]dx[/tex]
Secondly..
[tex] F\left[e^{-|x|}\right] = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx
[/tex]
[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0}f(x)e^{(1+ik)x}dx+\int_{0}^{\infty}f(x)e^{-(1+ik)x}dx \right] [/tex]
Which then after input of integration limits:
[tex] F\left[e^{-|x|}\right]=\frac{1}{\sqrt(2\pi)}\left[-e^{(1+ik)x} + e^{-(1+ik)x}\right][/tex]
.. and simplifies to:
[tex] F\left[e^{-|x|}\right]= -\sqrt{\frac{2}{\pi}}sinh\left((1+ik)x\right)[/tex]
..
So that's the calculations of the two parts (hopefully correctly), not sure how to now use these tho to calculate the actual value of the overall Fourier transform f(x)?
Any help and advice with any or all of this would be great! =D