Can You Solve This Fourier Transform Problem?

In summary, a Fourier transform is a mathematical operation used to break down a signal into its constituent frequencies. It is calculated by applying a formula involving complex numbers and is commonly used in signal processing and data analysis. It differs from a Fourier series, which is used for periodic signals and provides a discrete frequency spectrum. Real-world applications of Fourier transform calculations include sound and image processing, medical imaging, and financial analysis.
  • #1
Hart
169
0

Homework Statement



The Fourier transform of a function f(x) is given by the product of the Fourier transforms of [tex] cos(\alpha x) [/tex] and [tex] e^{-|x|} [/tex];

[tex]f^{~} = F^{~}\left[cos[\alpha x]\right]F^{~}\left[e^{-|x|}\right][/tex]

Find f(x) and show that it can be written as a real function.

Note: Do not use the Convolution Theorem, instead calculate f(x) by inverse Fourier transforming f(k).

Homework Equations



Through use of Dirac Delta Function:

  • [tex]\delta(\alpha - k) = \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{ix(\alpha-k)}dx[/tex]

  • [tex]\delta(-\alpha - k) = \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{-ix(\alpha+k)}dx[/tex]

The Attempt at a Solution



Since the solution is the product of two Fourier transforms, can calculate them seperately (?!)

Firstly..

[tex]F\left[cos(\alpha x)\right] = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}cos(\alpha x)e^{ikx}dx[/tex]

From Euler's Formula:

[tex] cos(\alpha x) = \frac{1}{2}\left[e^{i\alpha x}+e^{-i\alpha x}\right] [/tex]

Therefore:

[tex]F\left[cos(\alpha x)\right] = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\frac{1}{2}\left[e^{i\alpha x}+e^{-i\alpha x}\right]e^{ikx}dx[/tex]

Hence:

[tex]F\left[cos(\alpha x)\right] = \frac{1}{2\sqrt{2\pi}}\int_{-\infty}^{\infty}\left[e^{i(\alpha -k) x}+e^{-i(\alpha +k) x}\right]dx[/tex]

Then by using Dirac Delta Functions (already stated):

[tex]F\left[cos(\alpha x)\right] = \frac{1}{2 \sqrt{2 \pi}}\left[ 2 \pi \delta(\alpha -k) + 2 \pi \delta (-\alpha -k)\right]dx[/tex]

.. and after some rearranging:

[tex]F\left[cos(\alpha x)\right] = \sqrt{\frac{\pi}{2}}\left[\delta(\alpha -k) + \delta (\alpha +k)\right]dx[/tex]

Secondly..

[tex] F\left[e^{-|x|}\right] = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx
[/tex]

[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0}f(x)e^{(1+ik)x}dx+\int_{0}^{\infty}f(x)e^{-(1+ik)x}dx \right] [/tex]

Which then after input of integration limits:

[tex] F\left[e^{-|x|}\right]=\frac{1}{\sqrt(2\pi)}\left[-e^{(1+ik)x} + e^{-(1+ik)x}\right][/tex]

.. and simplifies to:

[tex] F\left[e^{-|x|}\right]= -\sqrt{\frac{2}{\pi}}sinh\left((1+ik)x\right)[/tex]

..

So that's the calculations of the two parts (hopefully correctly), not sure how to now use these tho to calculate the actual value of the overall Fourier transform f(x)?

Any help and advice with any or all of this would be great! =D
 
Physics news on Phys.org
  • #2
Hart said:
[tex]F\left[cos(\alpha x)\right] = \sqrt{\frac{\pi}{2}}\left[\delta(\alpha -k) + \delta (\alpha +k)\right]dx[/tex]

Good...

Secondly..

[tex] F\left[e^{-|x|}\right] = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx
[/tex]

[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0}f(x)e^{(1+ik)x}dx+\int_{0}^{\infty}f(x)e^{-(1+ik)x}dx \right] [/tex]

You've already got a mistake here.

[tex]e^{-|x|}=\left\{ \begin{array}{lr} e^{x} & x<0 \\ e^{-x} & x>0 \end{array}\.[/tex]

So,

[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0}e^{(1-ik)x}dx+\int_{0}^{\infty}e^{-(1+ik)x}dx \right] [/tex]

Which then after input of integration limits:

[tex] F\left[e^{-|x|}\right]=\frac{1}{\sqrt(2\pi)}\left[-e^{(1+ik)x} + e^{-(1+ik)x}\right][/tex]

.. and simplifies to:

[tex] F\left[e^{-|x|}\right]= -\sqrt{\frac{2}{\pi}}sinh\left((1+ik)x\right)[/tex]

If you've substituted your integration limits, why are there still [itex]x[/itex]'s in this expression? Also, shouldn't there be some pre-factors in front of your exponentials?

[tex]\frac{d}{dx} e^{(1-ik)x}=(1-ik)e^{(1-ik)x} \neq e^{(1-ik)x}[/tex]


So that's the calculations of the two parts (hopefully correctly), not sure how to now use these tho to calculate the actual value of the overall Fourier transform f(x)?

Any help and advice with any or all of this would be great! =D

Well, you are told that [itex]f(k)= F\left[cos(\alpha x)\right]F\left[e^{-|x|}\right][/itex] and you know that

[tex]f(x)=F^{-1}[f(k)]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(k)e^{ikx}dk[/tex]

Soooo...
 
  • #3
Attempting the second Fourier transform again..


[tex] F\left[e^{-|x|}\right] = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx
[/tex]

[tex] F\left[e^{-|x|}\right] = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{\infty}e^{-|x|}e^{-ikx}dx
[/tex]


[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{0}e^{(1-ik)x}dx+\int_{0}^{\infty}f(x)e^{-(1+ik)x}dx \right] [/tex]

Then integrating:

[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\left(\frac{e^{(1-ik)x}}{(1-ik)}\right)\right|^{0}_{-\infty} + \left(\frac{e^{-(1+ik)x}}{-(1+ik)}\right)\right|^{\infty}_{0} \right] [/tex]

Which then after input of integration limits:

[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left[\left(\frac{1}{(1-ik)}\right) + \left(\frac{-1}{-(1+ik)}\right)[/tex]

Then after some rearranging..

[tex]
F\left[e^{-|x|}\right]= \frac{1}{\sqrt{2 \pi}}\left(\frac{2}{(1+k^{2})}\right)[/tex]

Therefore:

[tex]
F\left[e^{-|x|}\right]= \sqrt{\frac{2}{\pi}}\left(\frac{1}{(1+k^{2})}\right)[/tex]

.. which I think is more correct now?


So:

[tex]f(k)= F\left[cos(\alpha x)\right]F\left[e^{-|x|} \right] [/tex]

[tex]f(k)= \left[\sqrt{\frac{\pi}{2}}\left[\delta(\alpha -k) + \delta (\alpha +k)\right]dx \right] \left[\sqrt{\frac{2}{\pi}}\left(\frac{1}{(1+k^{2})}\right) \right] [/tex]

[tex]f(k)= \left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx[/tex]

Then:
[tex]f(x)=F^{-1}[f(k)]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(k)e^{ikx}dk[/tex]

[tex]f(x)=F^{-1} \left[ \left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx \right]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx\right)e^{ikx}dk[/tex]

[tex]\int_{-\infty}^{\infty}\left(\left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx\right)e^{ikx}dk[/tex]
.. not sure what I do with this expression now :S
 
  • #4
Hart said:
[tex]
F\left[e^{-|x|}\right]= \sqrt{\frac{2}{\pi}}\left(\frac{1}{(1+k^{2})}\right)[/tex]

.. which I think is more correct now?
Good:approve:

So:

[tex]f(k)= F\left[cos(\alpha x)\right]F\left[e^{-|x|} \right] [/tex]

[tex]f(k)= \left[\sqrt{\frac{\pi}{2}}\left[\delta(\alpha -k) + \delta (\alpha +k)\right]dx \right] \left[\sqrt{\frac{2}{\pi}}\left(\frac{1}{(1+k^{2})}\right) \right] [/tex]

[tex]f(k)= \left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx[/tex]
Why is there a [itex]dx[/itex] in there? [itex]F[\cos(\alpha x)][/itex] is a function, not a differential. (I missed that you had a dx in your original post, it shouldn't be there)

Then:
[tex]f(x)=F^{-1}[f(k)]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(k)e^{ikx}dk[/tex]

[tex]f(x)=F^{-1} \left[ \left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx \right]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)dx\right)e^{ikx}dk[/tex]

.. not sure what I do with this expression now :S

Without the errant [itex]dx[/itex], you have

[tex]f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)e^{ikx}dk[/tex]

Now, split the integral into two and use the defining property of the delta function to integrate each piece.
 
  • #5
I get about splitting that integral up into two parts, hence the integrals, i.e.

[tex]f(x)=\frac{1}{\sqrt{2\pi}}\left[\int_{-\infty}^{0}\left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)e^{ikx}dk + \int_{0}^{\infty}\left(\frac{\delta(\alpha -k) + \delta (\alpha +k)}{(1+k^{2})}\right)e^{ikx}dk \right] [/tex]


Defining properties of delta function I have found:

[1] [tex] \delta(x) = 0[/tex] for [tex] x \neq 0 [/tex]

[2] [tex] \int_{-\infty}^{\infty} f(x) \delta \left( x-a \right) dx = f(a) [/tex]

[3] [tex] \int_{-\infty}^{\infty} \delta \left( x-a \right) dx = 1 [/tex]

[4] [tex] \delta \left(-x \right) = \delta \left(x \right) [/tex]

.. can't see how these are to be used though, sorry bit more help? :blushing:
 
  • #6
That's not what I meant by splitting up the integral;

[tex]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\frac{\delta(\alpha -k)+\delta(\alpha +k)}{(1+k^{2})}\right)e^{ikx}dk=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\frac{ \delta (\alpha -k)}{(1+k^{2})}\right)e^{ikx}dk+\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\frac{\delta (\alpha +k)}{(1+k^{2})}\right)e^{ikx}dk[/tex]

Use the second property you've listed above to evaluate each integral.

[tex]\int_{-\infty}^{\infty} f(x) \delta \left( x-a \right) dx = f(a)\implies\int_{-\infty}^{\infty} g(k) \delta \left( k-a \right) dk = g(a)[/tex]
 
  • #7
Still not quite sure, but will give it a go! ..

[tex]\int_{-\infty}^{\infty} f(x) \delta \left( x-a \right) dx = f(a)\implies\int_{-\infty}^{\infty} g(k) \delta \left( k-a \right) dk = g(a)[/tex]

So for the first integral:

[tex]\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\left(\frac{ \delta (\alpha -k)}{(1+k^{2})}\right)e^{ikx}dk[/tex]

[tex]\int_{-\infty}^{\infty} f(x) \delta \left( x-a \right) dx = f(a)\implies\int_{-\infty}^{\infty} \delta(k- \alpha) \left( \frac{e^{ixk}}{(1+k^{2})} \right)dk = f(\alpha)[/tex]

.. is this what you mean to do? :S
 
  • #8
You don't seem to be getting it...For the first integral, you are integrating an ordinary function of [itex]k[/itex], [tex]\inline{\frac{e^{ixk}}{(1+k^{2})}}[/tex] , times a delta function of [itex]k[/itex], [itex]\delta(k-\alpha)[/itex] , over all values of [itex]k[/itex]...Property (2) of the delta function (as listed a few posts ago) tell you that the result is simply that function [tex]\inline{\frac{e^{ixk}}{(1+k^{2})}}[/tex] evaluated at [itex]k=\alpha[/itex].

In other words,

[tex]\int_{-\infty}^{\infty} g(k) \delta \left( k-a \right) dk = g(a)\implies\int_{-\infty}^{\infty} \delta(k- \alpha) \left( \frac{e^{ixk}}{(1+k^{2})} \right)dk = \frac{e^{i\alpha x}}{(1+\alpha^{2})}[/tex]
 
  • #9
I didn't get how it changes from [tex]\delta(\alpha-k)[/tex] to [tex]\delta(k-\alpha)[/tex].

Right, so:

[tex]\frac{1}{\sqrt{(2 \pi)}}\int_{-\infty}^{\infty}\left( \frac{e^{ikx}}{(1+k^{2})} \right)\delta(k- \alpha)dk = \frac{e^{i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})}[/tex]

Then for the second integral, a similar method, as the only difference is the [tex](\alpha+k})[/tex] term instead of [tex](\alpha-k})[/tex] term.

But then know that:

[tex] \delta \left(-x \right) = \delta \left(x \right) [/tex]

So presumably can then use definition [2] as used in the first integral, thus giving the same result as for the first integral, but just negative:

[tex]- \frac{e^{i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})}[/tex]

.. but then that will give an overall result of 0.. ah :|
 
  • #10
Hart said:
I didn't get how it changes from [tex]\delta(\alpha-k)[/tex] to [tex]\delta(k-\alpha)[/tex].

You said it yourself:

But then know that:

[tex] \delta \left(-x \right) = \delta \left(x \right) [/tex]

[tex] \delta \left(-x \right) = \delta \left(x \right) \implies \delta(\alpha-k)=\delta(-(\alpha-k))=\delta(k-\alpha)[/tex]

So presumably can then use definition [2] as used in the first integral, thus giving the same result as for the first integral, but just negative:

[tex]- \frac{e^{i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})}[/tex]

No, that's not what you should get; [itex]\delta(k+\alpha)=\delta(k-(-\alpha))[/itex].
 
  • #11
Thanks for just clarifying that minor confusion, I just overlooked it before but I do understand that now.

So for the second integral:

[tex]\frac{1}{\sqrt{(2 \pi)}}\int_{-\infty}^{\infty}\left( \frac{e^{ikx}}{(1+k^{2})} \right)\delta(k+ \alpha)dk = \frac{1}{\sqrt{(2 \pi)}}\int_{-\infty}^{\infty}\left( \frac{e^{ikx}}{(1+k^{2})} \right)\delta(k - (-\alpha))dk = \frac{e^{-i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})}[/tex]

.. getting somewhere?!
 
  • #12
Hart said:
Thanks for just clarifying that minor confusion, I just overlooked it before but I do understand that now.

So for the second integral:

[tex]\frac{1}{\sqrt{(2 \pi)}}\int_{-\infty}^{\infty}\left( \frac{e^{ikx}}{(1+k^{2})} \right)\delta(k+ \alpha)dk = \frac{1}{\sqrt{(2 \pi)}}\int_{-\infty}^{\infty}\left( \frac{e^{ikx}}{(1+k^{2})} \right)\delta(k - (-\alpha))dk = \frac{e^{-i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})}[/tex]

.. getting somewhere?!

Looks good to me!:approve:

So, your final result is...?
 
  • #13
[tex]

\frac{e^{i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})} + \frac{e^{-i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})} = \frac{1}{\sqrt{2\pi}}
\left(\frac{e^{0}}{1+\alpha^{2}}\right) = \frac{1}{\sqrt{2\pi}(1+\alpha^{2})} = f(x)
[/tex]

??
 
Last edited:
  • #14
Hart said:
[tex]

\frac{e^{i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})} + \frac{e^{-i\alpha x}}{\sqrt{2 \pi}(1+\alpha^{2})} = \frac{1}{\sqrt{2\pi}}
\left(\frac{e^{0}}{1+\alpha^{2}}\right) = \frac{1}{\sqrt{2\pi}(1+\alpha^{2})} = f(x)
[/tex]

??

Huh? Where did [itex]e^0[/itex] come from?

[tex]e^{i\alpha x}+e^{-i\alpha x}=2\cos(\alpha x)\neq e^0[/itex]
 

FAQ: Can You Solve This Fourier Transform Problem?

What is a Fourier transform?

A Fourier transform is a mathematical operation that decomposes a signal into its constituent frequencies. It converts a time-domain signal into a frequency-domain representation.

What is the purpose of Fourier transform calculations?

The purpose of Fourier transform calculations is to analyze the frequency components of a signal and understand its underlying characteristics. It is commonly used in signal processing, image processing, and data analysis.

How is a Fourier transform calculated?

A Fourier transform is calculated by taking a mathematical formula and applying it to a signal. The formula involves complex numbers, and it can be performed using various algorithms, such as the Fast Fourier Transform (FFT).

What is the difference between a Fourier transform and a Fourier series?

A Fourier transform is used for continuous signals, while a Fourier series is used for periodic signals. Additionally, a Fourier transform provides a continuous frequency spectrum, while a Fourier series provides a discrete frequency spectrum.

What are some real-world applications of Fourier transform calculations?

Fourier transform calculations have a wide range of applications in various fields such as engineering, physics, and mathematics. Some examples include sound and image processing, medical imaging, digital communications, and financial analysis.

Back
Top