- #1
Ravenatic20
- 30
- 0
This is what I have so far:
[tex]\int (\frac{x^2}{\sqrt{4 + x^2}}) dx [/tex]
[tex]x = 2 tan u[/tex]
[tex]dx = (2 sec^2u) du[/tex]
[tex]x^2 = 4 tan^2 u[/tex]
[tex]\sqrt{4 + x^2} = \sqrt{4 + 4 tan^2 u}[/tex]
[tex]\sqrt{4 + x^2} = \sqrt{4 (1 + tan^2 u}[/tex]
[tex]\sqrt{4 + x^2} = \sqrt{4 sec^2 u}[/tex]
[tex]\sqrt{4 + x^2} = 2 sec u[/tex]
Then I have:
[tex]\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int \frac{4 tan^2 u}{2 sec u} 2 sec^2 u du[/tex]
[tex]\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int (4 tan^2 u)(sec u) du[/tex]
I keep getting stuck on this part, any ideas?
[tex]\int (\frac{x^2}{\sqrt{4 + x^2}}) dx [/tex]
[tex]x = 2 tan u[/tex]
[tex]dx = (2 sec^2u) du[/tex]
[tex]x^2 = 4 tan^2 u[/tex]
[tex]\sqrt{4 + x^2} = \sqrt{4 + 4 tan^2 u}[/tex]
[tex]\sqrt{4 + x^2} = \sqrt{4 (1 + tan^2 u}[/tex]
[tex]\sqrt{4 + x^2} = \sqrt{4 sec^2 u}[/tex]
[tex]\sqrt{4 + x^2} = 2 sec u[/tex]
Then I have:
[tex]\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int \frac{4 tan^2 u}{2 sec u} 2 sec^2 u du[/tex]
[tex]\int (\frac{x^2}{\sqrt{4 + x^2}}) dx = \int (4 tan^2 u)(sec u) du[/tex]
I keep getting stuck on this part, any ideas?