- #1
Francolino
- 14
- 0
I want to show the next statement:
$$ \lim_{(x,y)\to(0,0)} \frac {e^{x+y^2}-1-\sin \left ( x + \frac{y^2}{2} \right )}{x^2+y^2} = \frac {1}{2} $$
What I've tried so far:
$$ \begin{align*}
\left |\frac {e^{x+y^2}-1-\sin \left ( x + \frac{y^2}{2} \right )}{x^2+y^2} \right | &\leq \frac {\left |e^{x+y^2}-1-\sin \left ( x + \frac{y^2}{2} \right ) \right |}{\left \| (x,y) \right \|^2} \\
&\leq \frac {\left |e^{x+y^2}-1 \right |+ \left |\sin \left ( x + \frac{y^2}{2} \right ) \right |}{\left \| (x,y) \right \|^2} \\
&\leq \frac {\left |x+y^2 \right | + \left | x + \frac{y^2}{2} \right |}{\left \| (x,y) \right \|^2} \\
&\leq \frac {\left \| (x,y) \right \|^2 + \left \| (x,y) \right \|^2}{\left \| (x,y) \right \|^2} \\
&\leq \boxed {2 < \delta}
\end{align*} $$
So I can take $ \boxed {\delta= \varepsilon /2} $, right? Is it well done?
I've a few more questions:
(1) Are my inequalities well done?
(2) Do you have any suggestion for this kind of problem?
(3) When I'm making these inequalities, do I'm thinking that $ x $ and $ y $ are small or big numers? Are they less or equal than 1 or bigger?
Last edited: